Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(17): 3140-3154.e7, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37572670

RESUMO

Peroxiredoxins (Prdxs) utilize reversibly oxidized cysteine residues to reduce peroxides and promote H2O2 signal transduction, including H2O2-induced activation of P38 MAPK. Prdxs form H2O2-induced disulfide complexes with many proteins, including multiple kinases involved in P38 MAPK signaling. Here, we show that a genetically encoded fusion between a Prdx and P38 MAPK is sufficient to hyperactivate the kinase in yeast and human cells by a mechanism that does not require the H2O2-sensing cysteine of the Prdx. We demonstrate that a P38-Prdx fusion protein compensates for loss of the yeast scaffold protein Mcs4 and MAP3K activity, driving yeast into mitosis. Based on our findings, we propose that the H2O2-induced formation of Prdx-MAPK disulfide complexes provides an alternative scaffold and signaling platform for MAPKK-MAPK signaling. The demonstration that formation of a complex with a Prdx is sufficient to modify the activity of a kinase has broad implications for peroxide-based signal transduction in eukaryotes.


Assuntos
Peroxirredoxinas , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Cisteína/metabolismo , Dissulfetos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Oxirredução , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Antioxid Redox Signal ; 28(7): 574-590, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28762774

RESUMO

SIGNIFICANCE: In 2003, structural studies revealed that eukaryotic 2-Cys peroxiredoxins (Prx) have evolved to be sensitive to inactivation of their thioredoxin peroxidase activity by hyperoxidation (sulfinylation) of their peroxide-reacting catalytic cysteine. This was accompanied by the unexpected discovery, that the sulfinylation of this cysteine was reversible in vivo and the identification of a new enzyme, sulfiredoxin, that had apparently co-evolved specifically to reduce hyperoxidized 2-Cys Prx, restoring their peroxidase activity. Together, these findings have provided the impetus for multiple studies investigating the purpose of this reversible, Prx hyperoxidation. Recent Advances: It has been suggested that inhibition of the thioredoxin peroxidase activity by hyperoxidation can both promote and inhibit peroxide signal transduction, depending on the context. Prx hyperoxidation has also been proposed to protect cells against reactive oxygen species (ROS)-induced damage, by preserving reduced thioredoxin and/or by increasing non-peroxidase chaperone or signaling activities of Prx. CRITICAL ISSUES: Here, we will review the evidence in support of each of these proposed functions, in view of the in vivo contexts in which Prx hyperoxidation occurs, and the role of sulfiredoxin. Thus, we will attempt to explain the basis for seemingly contradictory roles for Prx hyperoxidation in redox signaling. FUTURE DIRECTIONS: We provide a rationale, based on modeling and experimental studies, for why Prx hyperoxidation should be considered a suitable, early biomarker for damaging levels of ROS. We discuss the implications that this has for the role of Prx in aging and the detection of hyperoxidized Prx as a conserved feature of circadian rhythms. Antioxid. Redox Signal. 28, 574-590.


Assuntos
Catálise , Peróxido de Hidrogênio/metabolismo , Chaperonas Moleculares/metabolismo , Peroxirredoxinas/metabolismo , Cisteína/química , Cisteína/metabolismo , Chaperonas Moleculares/química , Oxirredução , Peróxidos/metabolismo , Peroxirredoxinas/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
3.
Biochem Soc Trans ; 42(4): 909-16, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25109978

RESUMO

As a more selectively reactive oxygen species, H2O2 (hydrogen peroxide) has been co-opted as a signalling molecule, but high levels can still lead to lethal amounts of cell damage. 2-Cys Prxs (peroxiredoxins) are ubiquitous thioredoxin peroxidases which utilize reversibly oxidized catalytic cysteine residues to reduce peroxides. As such, Prxs potentially make an important contribution to the repertoire of cell defences against oxidative damage. Although the abundance of eukaryotic 2-Cys Prxs suggests an important role in maintaining cell redox, the surprising sensitivity of their thioredoxin peroxidase activity to inactivation by H2O2 has raised questions as to their role as an oxidative stress defence. Indeed, work in model yeast has led the way in revealing that Prxs do much more than simply remove peroxides and have even uncovered circumstances where their thioredoxin peroxidase activity is detrimental. In the present paper, we focus on what we have learned from studies in the fission yeast Schizosaccharomyces pombe about the different roles of 2-Cys Prxs in responses to H2O2 and discuss the general implications of these findings for other systems.


Assuntos
Peróxido de Hidrogênio/farmacologia , Peroxirredoxinas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/metabolismo , Estresse Oxidativo/efeitos dos fármacos
4.
Cell Rep ; 5(5): 1425-35, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24268782

RESUMO

H2O2 can cause oxidative damage associated with age-related diseases such as diabetes and cancer but is also used to initiate diverse responses, including increased antioxidant gene expression. Despite significant interest, H2O2-signaling mechanisms remain poorly understood. Here, we present a mechanism for the propagation of an H2O2 signal that is vital for the adaptation of the model yeast, Schizosaccharomyces pombe, to oxidative stress. Peroxiredoxins are abundant peroxidases with conserved antiaging and anticancer activities. Remarkably, we find that the only essential function for the thioredoxin peroxidase activity of the Prx Tpx1(hPrx1/2) in resistance to H2O2 is to inhibit a conserved thioredoxin family protein Txl1(hTxnl1/TRP32). Thioredoxins regulate many enzymes and signaling proteins. Thus, our discovery that a Prx amplifies an H2O2 signal by driving the oxidation of a thioredoxin-like protein has important implications, both for Prx function in oxidative stress resistance and for responses to H2O2.


Assuntos
Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Tiorredoxinas/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Peroxirredoxinas/genética , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Tiorredoxinas/genética
5.
Antioxid Redox Signal ; 19(18): 2244-60, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23706023

RESUMO

AIMS: As Candida albicans is the major fungal pathogen of humans, there is an urgent need to understand how this pathogen evades toxic reactive oxygen species (ROS) generated by the host immune system. A key regulator of antioxidant gene expression, and thus ROS resistance, in C. albicans is the AP-1-like transcription factor Cap1. Despite this, little is known regarding the intracellular signaling mechanisms that underlie the oxidation and activation of Cap1. Therefore, the aims of this study were; (i) to identify the regulatory proteins that govern Cap1 oxidation, and (ii) to investigate the importance of Cap1 oxidation in C. albicans pathogenesis. RESULTS: In response to hydrogen peroxide (H2O2), but not glutathione-depleting/modifying oxidants, Cap1 oxidation, nuclear accumulation, phosphorylation, and Cap1-dependent gene expression, is mediated by a glutathione peroxidase-like enzyme, which we name Gpx3, and an orthologue of the Saccharomyces cerevisiae Yap1 binding protein, Ybp1. In addition, Ybp1 also functions to stabilise Cap1 and this novel function is conserved in S. cerevisiae. C. albicans cells lacking Cap1, Ybp1, or Gpx3, are unable to filament and thus, escape from murine macrophages after phagocytosis, and also display defective virulence in the Galleria mellonella infection model. INNOVATION: Ybp1 is required to promote the stability of fungal AP-1-like transcription factors, and Ybp1 and Gpx3 mediated Cap1-dependent oxidative stress responses are essential for the effective killing of macrophages by C. albicans. CONCLUSION: Activation of Cap1, specifically by H2O2, is a prerequisite for the subsequent filamentation and escape of this fungal pathogen from the macrophage.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Candida albicans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Peróxido de Hidrogênio/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Animais , Candida albicans/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Oxirredução , Transdução de Sinais/efeitos dos fármacos
6.
Mol Cell Biol ; 32(21): 4472-81, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22949505

RESUMO

Although it is vital that cells detect and respond to oxidative stress to allow adaptation and repair damage, the underlying sensing and signaling mechanisms that control these responses are unclear. Protein ubiquitinylation plays an important role in controlling many biological processes, including cell division. In Saccharomyces cerevisiae, ubiquitinylation involves a single E1 enzyme, Uba1, with multiple E2s and E3s providing substrate specificity. For instance, the conserved E2 Cdc34 ubiquitinylates many substrates, including the cyclin-dependent kinase inhibitor Sic1, targeting it for degradation to allow cell cycle progression. Here we reveal that, in contrast to other ubiquitin pathway E2 enzymes, Cdc34 is particularly sensitive to oxidative inactivation, through sequestration of the catalytic cysteine in a disulfide complex with Uba1, by levels of oxidant that do not reduce global ubiquitinylation of proteins. This Cdc34 oxidation is associated with (i) reduced levels of Cdc34-ubiquitin thioester forms, (ii) increased stability of at least one Cdc34 substrate, Sic1, and (iii) Sic1-dependent delay in cell cycle progression. Together, these data reveal that the differential sensitivity of a ubiquitin pathway E2 enzyme to oxidation is utilized as a stress-sensing mechanism to respond to oxidative stress.


Assuntos
Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Ciclo Celular , Divisão Celular , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Especificidade por Substrato , Ubiquitina , Enzimas de Conjugação de Ubiquitina , Ubiquitinação
7.
Mol Cell ; 45(3): 398-408, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22245228

RESUMO

Eukaryotic 2-Cys peroxiredoxins (Prx) are abundant antioxidant enzymes whose thioredoxin peroxidase activity plays an important role in protecting against oxidative stress, aging, and cancer. Paradoxically, this thioredoxin peroxidase activity is highly sensitive to inactivation by peroxide-induced Prx hyperoxidation. However, any possible advantage in preventing Prx from removing peroxides under oxidative stress conditions has remained obscure. Here we demonstrate that, in cells treated with hydrogen peroxide, the Prx Tpx1 is a major substrate for thioredoxin in the fission yeast Schizosaccharomyces pombe and, as such, competitively inhibits thioredoxin-mediated reduction of other oxidized proteins. Consequently, we reveal that the hyperoxidation of Tpx1 is critical to allow thioredoxin to act on other substrates ensuring repair of oxidized proteins and cell survival following exposure to toxic levels of hydrogen peroxide. We conclude that the inactivation of the thioredoxin peroxidase activity of Prx is important to maintain thioredoxin activity and cell viability under oxidative stress conditions.


Assuntos
Peróxido de Hidrogênio/farmacologia , Peroxirredoxinas/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Tiorredoxinas/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Dissulfetos/metabolismo , Técnicas de Inativação de Genes , Peróxido de Hidrogênio/metabolismo , Metionina/análogos & derivados , Metionina/metabolismo , Viabilidade Microbiana , Oxirredução , Estresse Oxidativo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Schizosaccharomyces/fisiologia , Proteínas de Schizosaccharomyces pombe/genética , Tiorredoxinas/genética
8.
Cell Cycle ; 10(4): 664-70, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21304269

RESUMO

Checkpoints monitor the successful completion of cell cycle processes, such as DNA replication, and also regulate the expression of cell cycle-dependent genes that are required for responses. In the model yeast Schizosaccharomyces pombe G 1/S phase-specific gene expression is regulated by the MBF (also known as DSC1) transcription factor complex and is also activated by the mammalian ATM/ATR-related Rad3 DNA replication checkpoint. Here, we show that the Yox1 homeodomain transcription factor acts to co-ordinate the expression of MBF-regulated genes during the cell division cycle. Moreover, our data suggests that Yox1 is inactivated by the Rad3 DNA replication checkpoint via phosphorylation by the conserved Cds1 checkpoint kinase. Collectively, our data has implications for understanding the mechanisms underlying the coordination of cell cycle processes in eukaryotes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Replicação do DNA , Regulação Fúngica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2 , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/genética , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
9.
Proc Natl Acad Sci U S A ; 105(50): 19839-44, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19064914

RESUMO

Oxidative damage caused by reactive oxygen species (ROS) is implicated in many diseases and in aging. Removal of ROS by antioxidant enzymes plays an important part in limiting this damage. For instance, peroxiredoxins (Prx) are conserved, abundant, thioredoxin peroxidase enzymes that function as tumor suppressors. In addition to detoxifying peroxides, studies in single-cell systems have revealed that Prx act as chaperones and redox sensors. However, it is unknown in what manner the different activities of Prx influence stress resistance or longevity in the context of whole animals. Here, we reveal three distinct roles for the 2-Cys Prx, PRDX-2, in the stress resistance of the nematode worm Caenorhabditis elegans. (i) The thioredoxin peroxidase activity of PRDX-2 protects against hydrogen peroxide. (ii) Consistent with a chaperone activity for hyperoxidized PRDX-2, peroxide-induced oxidation of PRDX-2 increases resistance to heat stress. (iii) Unexpectedly, loss of PRDX-2 increases the resistance of C. elegans to some oxidative stress-causing agents, such as arsenite, apparently through a signaling mechanism that increases the levels of other antioxidants and phase II detoxification enzymes. Despite their increased resistance to some forms of oxidative stress, prdx-2 mutants are short-lived. Moreover, intestinal expression of PRDX-2 accounts for its role in detoxification of exogenous peroxide, but not its influence on either arsenite resistance or longevity, suggesting that PRDX-2 may promote longevity and protect against environmental stress through different mechanisms. Together the data reveal that in metazoans Prx act through multiple biochemical activities, and have tissue-specific functions in stress resistance and longevity.


Assuntos
Caenorhabditis elegans/fisiologia , Resposta ao Choque Térmico , Mucosa Intestinal/metabolismo , Longevidade , Peroxirredoxinas/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans , Resposta ao Choque Térmico/genética , Peróxido de Hidrogênio/farmacologia , Longevidade/genética , Oxirredução , Peroxirredoxinas/genética , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual
10.
J Biol Chem ; 280(24): 23319-27, 2005 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-15824112

RESUMO

Although activation of the AP-1-like transcription factor Pap1 in Schizosaccharomyces pombe is important for oxidative stress-induced gene expression, this activation is delayed at higher concentrations of peroxide. Here, we reveal that the 2-Cys peroxiredoxin (2-Cys Prx) Tpx1 is required for the peroxide-induced activation of Pap1. Tpx1, like other eukaryotic 2-Cys Prxs, is highly sensitive to oxidation, which inactivates its thioredoxin peroxidase activity. Our data suggest that the reduced thioredoxin peroxidase-active form of Tpx1 is required for the peroxide-induced oxidation and nuclear accumulation of Pap1. Indeed, in contrast to the previously described role for Tpx1 in the activation of the Sty1 stress-activated protein kinase by peroxide, we find that both catalytic cysteines of Tpx1 are required for Pap1 activation. Moreover, overexpression of the conserved sulfiredoxin Srx1, which interacts with and reduces Tpx1, allows rapid activation of Pap1 at higher concentrations of H(2)O(2). Conversely, loss of Srx1 prevents the reduction of oxidized Tpx1 and prolongs the inhibition of Pap1 activation. Collectively, these data suggest that redox regulation of the thioredoxin peroxidase activity of Tpx1 acts as a molecular switch controlling the transcriptional response to H(2)O(2). Furthermore, they reveal that a single eukaryotic 2-Cys Prx regulates peroxide signaling by multiple independent mechanisms.


Assuntos
Regulação Fúngica da Expressão Gênica , Oxigênio/metabolismo , Peroxidases/fisiologia , Peróxidos/metabolismo , Schizosaccharomyces/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica , Western Blotting , Catálise , Núcleo Celular/metabolismo , Cisteína/química , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Técnica Indireta de Fluorescência para Anticorpo , Proteínas Fúngicas/metabolismo , Peróxido de Hidrogênio/farmacologia , Imunoprecipitação , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Oxirredução , Estresse Oxidativo , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Proteínas Associadas a Pancreatite , Peroxidases/química , Peroxirredoxinas , RNA Viral/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Tempo , Transcrição Gênica
11.
Mol Cell ; 15(1): 129-39, 2004 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-15225554

RESUMO

Oxidative stress-induced cell damage is an important component of many diseases and ageing. In eukaryotes, activation of JNK/p38 stress-activated protein kinase (SAPK) signaling pathways is critical for the cellular response to stress. 2-Cys peroxiredoxins (2-Cys Prx) are highly conserved, extremely abundant antioxidant enzymes that catalyze the breakdown of peroxides to protect cells from oxidative stress. Here we reveal that Tpx1, the single 2-Cys Prx in Schizosaccharomyces pombe, is required for the peroxide-induced activation of the p38/JNK homolog, Sty1. Tpx1 activates Sty1, downstream of previously identified redox sensors, by a mechanism that involves formation of a peroxide-induced disulphide complex between Tpx1 and Sty1. We have identified conserved cysteines in Tpx1 and Sty1 that are essential for normal peroxide-induced Tpx1-Sty1 disulphide formation and Tpx1-dependent regulation of peroxide-induced Sty1 activation. Thus we provide new insight into the response of SAPKs to diverse stimuli by revealing a mechanism for SAPK activation specifically by oxidative stress.


Assuntos
Cisteína/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo/fisiologia , Peroxidases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos/genética , Sequência de Bases/genética , Sítios de Ligação/fisiologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Peróxido de Hidrogênio/farmacologia , Substâncias Macromoleculares , Proteína Quinase 8 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Oxidantes/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Peroxidases/genética , Peroxidases/isolamento & purificação , Peroxirredoxinas , Ligação Proteica/fisiologia , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais/fisiologia , Sulfetos/metabolismo
12.
J Biol Chem ; 278(33): 30896-904, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12743123

RESUMO

We describe the characterization of Ybp1, a novel protein, in Saccharomyces cerevisiae, that is required for the oxidative stress response to peroxides. Ybp1 is required for H2O2-induced expression of the antioxidant encoding gene TRX2. Our data indicate that the effects of Ybp1 are mediated through the Yap1 transcription factor. Indeed, Ybp1 forms a stress-induced complex with Yap1 in vivo and stimulates the nuclear accumulation of Yap1 in response to H2O2 but not in response to the thiol-oxidizing agent diamide. The H2O2-induced nuclear accumulation of Yap1 is regulated by the oxidation of specific cysteine residues and is dependent on the thiol peroxidase Gpx3. Our data suggest that Ybp1 is required for the H2O2-induced oxidation of Yap1 and acts in the same pathway as Gpx3. Consequently, Ybp1 represents a novel class of stress regulator of Yap1. These data have important implications for the regulation of protein oxidation and stress responses in eukaryotes.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação Fúngica da Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Dados de Sequência Molecular , Oxidantes/farmacologia , Oxirredução , Estresse Oxidativo/fisiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA