Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1033, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823144

RESUMO

The malaria parasite Plasmodium falciparum causes substantial human mortality, primarily in equatorial Africa. Enriched in affected African populations, the B*53 variant of HLA-B, a cell surface protein that presents peptide antigens to cytotoxic lymphocytes, confers protection against severe malaria. Gorilla, chimpanzee, and bonobo are humans' closest living relatives. These African apes have HLA-B orthologs and are infected by parasites in the same subgenus (Laverania) as P. falciparum, but the consequences of these infections are unclear. Laverania parasites infect bonobos (Pan paniscus) at only one (TL2) of many sites sampled across their range. TL2 spans the Lomami River and has genetically divergent subpopulations of bonobos on each side. Papa-B, the bonobo ortholog of HLA-B, includes variants having a B*53-like (B07) peptide-binding supertype profile. Here we show that B07 Papa-B occur at high frequency in TL2 bonobos and that malaria appears to have independently selected for different B07 alleles in the two subpopulations.


Assuntos
Antígenos de Histocompatibilidade Classe I , Malária Falciparum , Pan paniscus , Plasmodium , Animais , Malária Falciparum/genética , Pan paniscus/genética , Pan paniscus/parasitologia , Peptídeos , Filogenia , Antígenos de Histocompatibilidade Classe I/genética
2.
Commun Biol ; 5(1): 1020, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167977

RESUMO

Chimpanzees (Pan troglodytes) harbor rich assemblages of malaria parasites, including three species closely related to P. falciparum (sub-genus Laverania), the most malignant human malaria parasite. Here, we characterize the ecology and epidemiology of malaria infection in wild chimpanzee reservoirs. We used molecular assays to screen chimpanzee fecal samples, collected longitudinally and cross-sectionally from wild populations, for malaria parasite mitochondrial DNA. We found that chimpanzee malaria parasitism has an early age of onset and varies seasonally in prevalence. A subset of samples revealed Hepatocystis mitochondrial DNA, with phylogenetic analyses suggesting that Hepatocystis appears to cross species barriers more easily than Laverania. Longitudinal and cross-sectional sampling independently support the hypothesis that mean ambient temperature drives spatiotemporal variation in chimpanzee Laverania infection. Infection probability peaked at ~24.5 °C, consistent with the empirical transmission optimum of P. falciparum in humans. Forest cover was also positively correlated with spatial variation in Laverania prevalence, consistent with the observation that forest-dwelling Anophelines are the primary vectors. Extrapolating these relationships across equatorial Africa, we map spatiotemporal variation in the suitability of chimpanzee habitat for Laverania transmission, offering a hypothetical baseline indicator of human exposure risk.


Assuntos
Hominidae , Malária Falciparum , Malária , Plasmodium , Animais , Estudos Transversais , DNA Mitocondrial/genética , Humanos , Malária/epidemiologia , Malária/parasitologia , Malária/veterinária , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Pan troglodytes/genética , Filogenia , Plasmodium/genética
3.
Proc Natl Acad Sci U S A ; 116(8): 3229-3238, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718403

RESUMO

Human and simian immunodeficiency viruses (HIV/SIVs) use CD4 as the primary receptor to enter target cells. Here, we show that the chimpanzee CD4 is highly polymorphic, with nine coding variants present in wild populations, and that this diversity interferes with SIV envelope (Env)-CD4 interactions. Testing the replication fitness of SIVcpz strains in CD4+ T cells from captive chimpanzees, we found that certain viruses were unable to infect cells from certain hosts. These differences were recapitulated in CD4 transfection assays, which revealed a strong association between CD4 genotypes and SIVcpz infection phenotypes. The most striking differences were observed for three substitutions (Q25R, Q40R, and P68T), with P68T generating a second N-linked glycosylation site (N66) in addition to an invariant N32 encoded by all chimpanzee CD4 alleles. In silico modeling and site-directed mutagenesis identified charged residues at the CD4-Env interface and clashes between CD4- and Env-encoded glycans as mechanisms of inhibition. CD4 polymorphisms also reduced Env-mediated cell entry of monkey SIVs, which was dependent on at least one D1 domain glycan. CD4 allele frequencies varied among wild chimpanzees, with high diversity in all but the western subspecies, which appeared to have undergone a selective sweep. One allele was associated with lower SIVcpz prevalence rates in the wild. These results indicate that substitutions in the D1 domain of the chimpanzee CD4 can prevent SIV cell entry. Although some SIVcpz strains have adapted to utilize these variants, CD4 diversity is maintained, protecting chimpanzees against infection with SIVcpz and other SIVs to which they are exposed.


Assuntos
Antígenos CD4/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia/genética , Proteínas do Envelope Viral/genética , Animais , Antígenos CD4/imunologia , Linfócitos T CD4-Positivos/imunologia , Evolução Molecular , Variação Genética/imunologia , HIV/genética , HIV/patogenicidade , Humanos , Pan troglodytes/genética , Pan troglodytes/imunologia , Polissacarídeos/genética , Polissacarídeos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA