Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 134: 105399, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35963021

RESUMO

Vitreoretinal mechanics plays an important role in retinal trauma and many sight-threatening diseases. In age-related pathologies, such as posterior vitreous detachment and vitreomacular traction, lingering vitreoretinal adhesions can lead to macular holes, epiretinal membranes, retinal tears and detachment. In age-related macular degeneration, vitreoretinal traction has been implicated in the acceleration of the disease due to the stimulation of vascular growth factors. Despite this strong mechanobiological influence on trauma and disease in the eye, fundamental understanding of the mechanics at the vitreoretinal interface is limited. Clarification of adhesion mechanisms and the role of vitreoretinal mechanics in healthy eyes and disease is necessary to develop innovative treatments for these pathologies. In this review, we evaluate the existing literature on the structure and function of the vitreoretinal interface to gain insight into age- and region-dependent mechanisms of vitreoretinal adhesion. We explore the role of vitreoretinal adhesion in ocular pathologies to identify knowledge gaps and future research areas. Finally, we recommend future mechanics-based studies to address the critical needs in the field, increase fundamental understanding of vitreoretinal mechanisms and disease, and inform disease treatments.


Assuntos
Perfurações Retinianas , Corpo Vítreo , Humanos , Perfurações Retinianas/patologia , Aderências Teciduais , Corpo Vítreo/patologia
2.
Proc Natl Acad Sci U S A ; 116(22): 10824-10833, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31072937

RESUMO

Rod and cone photoreceptors are light-sensing cells in the human retina. Rods are dominant in the peripheral retina, whereas cones are enriched in the macula, which is responsible for central vision and visual acuity. Macular degenerations affect vision the most and are currently incurable. Here we report the generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids differentiated from hESCs using an improved retinal differentiation system. Induced by extracellular matrix, aggregates of hESCs formed single-lumen cysts composed of epithelial cells with anterior neuroectodermal/ectodermal fates, including retinal cell fate. Then, the cysts were en bloc-passaged, attached to culture surface, and grew, forming colonies in which retinal progenitor cell patches were found. Following gentle cell detachment, retinal progenitor cells self-assembled into retinal epithelium-retinal organoid-that differentiated into stratified cone-rich retinal tissue in agitated cultures. Electron microscopy revealed differentiating outer segments of photoreceptor cells. Bulk RNA-sequencing profiling of time-course retinal organoids demonstrated that retinal differentiation in vitro recapitulated in vivo retinogenesis in temporal expression of cell differentiation markers and retinal disease genes, as well as in mRNA alternative splicing. Single-cell RNA-sequencing profiling of 8-mo retinal organoids identified cone and rod cell clusters and confirmed the cone enrichment initially revealed by quantitative microscopy. Notably, cones from retinal organoids and human macula had similar single-cell transcriptomes, and so did rods. Cones in retinal organoids exhibited electrophysiological functions. Collectively, we have established cone-rich retinal organoids and a reference of transcriptomes that are valuable resources for retinal studies.


Assuntos
Organoides , Células Fotorreceptoras Retinianas Cones , Transcriptoma/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Células-Tronco Embrionárias , Humanos , Organoides/química , Organoides/citologia , Organoides/metabolismo , Organoides/fisiologia , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/química , Retina/citologia , Retina/metabolismo , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/química , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Análise de Célula Única
3.
Hum Mol Genet ; 26(R1): R45-R50, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854576

RESUMO

Age-related macular degeneration (AMD) is a progressive blinding disease and represents the leading cause of visual impairment in the aging population. AMD affects central vision which impairs one's ability to drive, read and recognize faces. There is no cure for this disease and current treatment modalities for the exudative form of the disease require repeated intravitreal injections which may be painful, are incompletely efficacious, and represent a significant treatment burden for both the patient and physician. As such, AMD represents a significant and important clinical problem.It is anticipated that in three years' time, 196 million individuals will be affected with AMD. Over 250 billion dollars per year are spent on care for AMD patients in the US. Over half of the heritability is explained by two major loci, thus AMD is considered the most well genetically defined of the complex disorders. A recent GWAS on 43,566 subjects identified novel loci and pathways associated with AMD risk, which has provided an excellent platform for additional functional studies. Genetic variants have been investigated, particularly with respect to anti-VEGF treatment, however to date, no pharmacogenomic associations have been consistently identified across these studies. It may be that if the goal of personalized medicine is to be realized and biomarkers are to have predictive value for determining the magnitude of risk for AMD at the genetic level, one will need to examine the relationships between these pathways across disease state and relative to modifiable risk factors such as hypertension, smoking, body mass index, and hypercholesterolemia. Further studies investigating protective alleles in populations with low AMD prevalence may lead to this goal.


Assuntos
Degeneração Macular/genética , Predisposição Genética para Doença/genética , Terapia Genética , Estudo de Associação Genômica Ampla , Humanos , Degeneração Macular/metabolismo , Medicina de Precisão , Fatores de Risco
4.
Invest Ophthalmol Vis Sci ; 55(6): 3543-54, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24812550

RESUMO

PURPOSE: Current understanding of the genetic risk factors for age-related macular degeneration (AMD) is not sufficiently predictive of the clinical course. The VEGF pathway is a key therapeutic target for treatment of neovascular AMD; however, risk attributable to genetic variation within pathway genes is unclear. We sought to identify single nucleotide polymorphisms (SNPs) associated with AMD within the VEGF pathway. METHODS: Using a tagSNP, direct sequencing and meta-analysis approach within four ethnically diverse cohorts, we identified genetic risk present in FLT1, though not within other VEGF pathway genes KDR, VEGFA, or VASH1. We used ChIP and ELISA in functional analysis. RESULTS: The FLT1 SNPs rs9943922, rs9508034, rs2281827, rs7324510, and rs9513115 were significantly associated with increased risk of neovascular AMD. Each association was more significant after meta-analysis than in any one of the four cohorts. All associations were novel, within noncoding regions of FLT1 that do not tag for coding variants in linkage disequilibrium. Analysis of soluble FLT1 demonstrated higher expression in unaffected individuals homozygous for the FLT1 risk alleles rs9943922 (P = 0.0086) and rs7324510 (P = 0.0057). In silico analysis suggests that these variants change predicted splice sites and RNA secondary structure, and have been identified in other neovascular pathologies. These data were supported further by murine chromatin immunoprecipitation demonstrating that FLT1 is a target of Nr2e3, a nuclear receptor gene implicated in regulating an AMD pathway. CONCLUSIONS: Although exact variant functions are not known, these data demonstrate relevancy across ethnically diverse genetic backgrounds within our study and, therefore, hold potential for global efficacy.


Assuntos
Etnicidade , Predisposição Genética para Doença , Degeneração Macular/genética , Polimorfismo Genético , RNA/genética , Neovascularização Retiniana/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Genótipo , Grécia/etnologia , Humanos , Imunoprecipitação , Degeneração Macular/etnologia , Degeneração Macular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Prevalência , República da Coreia/etnologia , Neovascularização Retiniana/etnologia , Neovascularização Retiniana/metabolismo , Fatores de Risco , Reino Unido/etnologia , Estados Unidos/epidemiologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA