Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38640914

RESUMO

Objective.Magnetic nanoparticles can be used as a targeted delivery vehicle for genetic therapies. Understanding how they can be manipulated within the complex environment of live airways is key to their application to cystic fibrosis and other respiratory diseases.Approach.Dark-field x-ray imaging provides sensitivity to scattering information, and allows the presence of structures smaller than the detector pixel size to be detected. In this study, ultra-fast directional dark-field synchrotron x-ray imaging was utlilised to understand how magnetic nanoparticles move within a live, anaesthetised, rat airway under the influence of static and moving magnetic fields.Main results.Magnetic nanoparticles emerging from an indwelling tracheal cannula were detectable during delivery, with dark-field imaging increasing the signal-to-noise ratio of this event by 3.5 times compared to the x-ray transmission signal. Particle movement as well as particle retention was evident. Dynamic magnetic fields could manipulate the magnetic particlesin situ. Significance.This is the first evidence of the effectiveness ofin vivodark-field imaging operating at these spatial and temporal resolutions, used to detect magnetic nanoparticles. These findings provide the basis for further development toward the effective use of magnetic nanoparticles, and advance their potential as an effective delivery vehicle for genetic agents in the airways of live organisms.


Assuntos
Técnicas de Transferência de Genes , Animais , Ratos , Fatores de Tempo , Campos Magnéticos , Traqueia/diagnóstico por imagem , Nanopartículas de Magnetita/química , Raios X , Síncrotrons
2.
Sci Rep ; 12(1): 9000, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637239

RESUMO

Gene vectors to treat cystic fibrosis lung disease should be targeted to the conducting airways, as peripheral lung transduction does not offer therapeutic benefit. Viral transduction efficiency is directly related to the vector residence time. However, delivered fluids such as gene vectors naturally spread to the alveoli during inspiration, and therapeutic particles of any form are rapidly cleared via mucociliary transit. Extending gene vector residence time within the conducting airways is important, but hard to achieve. Gene vector conjugated magnetic particles that can be guided to the conducting airway surfaces could improve regional targeting. Due to the challenges of in-vivo visualisation, the behaviour of such small magnetic particles on the airway surface in the presence of an applied magnetic field is poorly understood. The aim of this study was to use synchrotron imaging to visualise the in-vivo motion of a range of magnetic particles in the trachea of anaesthetised rats to examine the dynamics and patterns of individual and bulk particle behaviour in-vivo. We also then assessed whether lentiviral-magnetic particle delivery in the presence of a magnetic field increases transduction efficiency in the rat trachea. Synchrotron X-ray imaging revealed the behaviour of magnetic particles in stationary and moving magnetic fields, both in-vitro and in-vivo. Particles could not easily be dragged along the live airway surface with the magnet, but during delivery deposition was focussed within the field of view where the magnetic field was the strongest. Transduction efficiency was also improved six-fold when the lentiviral-magnetic particles were delivered in the presence of a magnetic field. Together these results show that lentiviral-magnetic particles and magnetic fields may be a valuable approach for improving gene vector targeting and increasing transduction levels in the conducting airways in-vivo.


Assuntos
Terapia Genética , Síncrotrons , Animais , Magnetismo , Ratos , Traqueia/fisiologia , Raios X
3.
Sci Rep ; 10(1): 10859, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616726

RESUMO

To effectively diagnose, monitor and treat respiratory disease clinicians should be able to accurately assess the spatial distribution of airflow across the fine structure of lung. This capability would enable any decline or improvement in health to be located and measured, allowing improved treatment options to be designed. Current lung function assessment methods have many limitations, including the inability to accurately localise the origin of global changes within the lung. However, X-ray velocimetry (XV) has recently been demonstrated to be a sophisticated and non-invasive lung function measurement tool that is able to display the full dynamics of airflow throughout the lung over the natural breathing cycle. In this study we present two developments in XV analysis. Firstly, we show the ability of laboratory-based XV to detect the patchy nature of cystic fibrosis (CF)-like disease in ß-ENaC mice. Secondly, we present a technique for numerical quantification of CF-like disease in mice that can delineate between two major modes of disease symptoms. We propose this analytical model as a simple, easy-to-interpret approach, and one capable of being readily applied to large quantities of data generated in XV imaging. Together these advances show the power of XV for assessing local airflow changes. We propose that XV should be considered as a novel lung function measurement tool for lung therapeutics development in small animal models, for CF and for other muco-obstructive diseases.


Assuntos
Coração/fisiopatologia , Pneumopatias Obstrutivas/patologia , Depuração Mucociliar , Muco/metabolismo , Microtomografia por Raio-X/métodos , Animais , Coração/diagnóstico por imagem , Pneumopatias Obstrutivas/diagnóstico por imagem , Camundongos , Muco/diagnóstico por imagem
4.
Phys Med Biol ; 65(14): 145012, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32045895

RESUMO

Accurate in vivo quantification of airway mucociliary transport (MCT) in animal models is important for understanding diseases such as cystic fibrosis, as well as for developing therapies. A non-invasive method of measuring MCT behaviour, based on tracking the position of micron sized particles using synchrotron x-ray imaging, has previously been described. In previous studies, the location (and path) of each particle was tracked manually, which is a time consuming and subjective process. Here we describe particle tracking methods that were developed to reduce the need for manual particle tracking. The MCT marker particles were detected in the synchrotron x-ray images using cascade classifiers. The particle trajectories along the airway surface were generated by linking the detected locations between frames using a modified particle linking algorithm. The developed methods were compared with the manual tracking method on simulated x-ray images, as well as on in vivo images of rat airways acquired at the SPring-8 Synchrotron. The results for the simulated and in vivo images showed that the semi-automatic algorithm reduced the time required for particle tracking when compared with the manual tracking method, and was able to detect MCT marker particle locations and measure particle speeds more accurately than the manual tracking method. Future work will examine the modification of methods to improve particle detection and particle linking algorithms to allow for more accurate fully-automatic particle tracking.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Movimento , Depuração Mucociliar , Radiografia/instrumentação , Síncrotrons , Traqueia/diagnóstico por imagem , Traqueia/fisiologia , Algoritmos , Animais , Automação , Ratos
5.
Sci Rep ; 10(1): 447, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949224

RESUMO

Most measures of lung health independently characterise either global lung function or regional lung structure. The ability to measure airflow and lung function regionally would provide a more specific and physiologically focused means by which to assess and track lung disease in both pre-clinical and clinical settings. One approach for achieving regional lung function measurement is via phase contrast X-ray imaging (PCXI), which has been shown to provide highly sensitive, high-resolution images of the lungs and airways in small animals. The detailed images provided by PCXI allow the application of four-dimensional X-ray velocimetry (4DxV) to track lung tissue motion and provide quantitative information on regional lung function. However, until recently synchrotron facilities were required to produce the highly coherent, high-flux X-rays that are required to achieve lung PCXI at a high enough frame rate to capture lung motion. This paper presents the first translation of 4DxV technology from a synchrotron facility into a laboratory setting by using a liquid-metal jet microfocus X-ray source. This source can provide the coherence required for PCXI and enough X-ray flux to image the dynamics of lung tissue motion during the respiratory cycle, which enables production of images compatible with 4DxV analysis. We demonstrate the measurements that can be captured in vivo in live mice using this technique, including regional airflow and tissue expansion. These measurements can inform physiological and biomedical research studies in small animals and assist in the development of new respiratory treatments.


Assuntos
Fibrose Cística/diagnóstico por imagem , Fibrose Cística/fisiopatologia , Laboratórios , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Tomografia Computadorizada por Raios X/instrumentação , Animais , Modelos Animais de Doenças , Camundongos , Ventilação Pulmonar , Fatores de Tempo
6.
Small ; 15(49): e1904112, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31639283

RESUMO

Targeted delivery of nanomedicine/nanoparticles (NM/NPs) to the site of disease (e.g., the tumor or lung injury) is of vital importance for improved therapeutic efficacy. Multimodal imaging platforms provide powerful tools for monitoring delivery and tissue distribution of drugs and NM/NPs. This study introduces a preclinical imaging platform combining X-ray (two modes) and fluorescence imaging (three modes) techniques for time-resolved in vivo and spatially resolved ex vivo visualization of mouse lungs during pulmonary NP delivery. Liquid mixtures of iodine (contrast agent for X-ray) and/or (nano)particles (X-ray absorbing and/or fluorescent) are delivered to different regions of the lung via intratracheal instillation, nasal aspiration, and ventilator-assisted aerosol inhalation. It is demonstrated that in vivo propagation-based phase-contrast X-ray imaging elucidates the dynamic process of pulmonary NP delivery, while ex vivo fluorescence imaging (e.g., tissue-cleared light sheet fluorescence microscopy) reveals the quantitative 3D drug/particle distribution throughout the entire lung with cellular resolution. The novel and complementary information from this imaging platform unveils the dynamics and mechanisms of pulmonary NM/NP delivery and deposition for each of the delivery routes, which provides guidance on optimizing pulmonary delivery techniques and novel-designed NM for targeting and efficacy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Pulmão/metabolismo , Nanomedicina/métodos , Nanopartículas/química , Animais , Feminino , Pulmão/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência
7.
Sci Rep ; 9(1): 10983, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358851

RESUMO

We have previously developed non-invasive in vivo mucociliary transport (MCT) monitoring methods using synchrotron phase contrast X-ray imaging (PCXI) to evaluate potential therapies for cystic fibrosis (CF). However, previous in vivo measurements of MCT velocity using this method were lower than those from alternate methods. We hypothesise this was due to the surface chemistry of the uncoated particles. We investigated the effect of particle surface coating on MCT marker performance by measuring the velocity of uncoated, positively-charged (aminated; NH2), and negatively-charged (carboxylated; COOH) particles. The effect of aerosolised hypertonic saline (HS) was also investigated, as previous in vivo measurements showed HS significantly increased MCT rate. PCXI experiments were performed using an ex vivo rat tracheal imaging setup. Prior to aerosol delivery there was little movement of the uncoated particles, whilst the NH2 and COOH particles moved with MCT rates similar to those previously reported. After application of HS the uncoated and COOH particle velocity increased and NH2 decreased. This experiment validated the use of COOH particles as MCT marker particles over the uncoated and NH2 coated particles. Our results suggest that future experiments measuring MCT using synchrotron PCXI should use COOH coated marker particles for more accurate MCT quantification.


Assuntos
Depuração Mucociliar , Traqueia/fisiologia , Animais , Desenho de Equipamento , Feminino , Tamanho da Partícula , Radiografia , Ratos , Ratos Wistar , Propriedades de Superfície , Síncrotrons , Traqueia/diagnóstico por imagem , Raios X
8.
J Synchrotron Radiat ; 26(Pt 1): 175-183, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30655483

RESUMO

The Australian Synchrotron Imaging and Medical Beamline (IMBL) was designed to be the world's widest synchrotron X-ray beam, partly to enable clinical imaging and therapeutic applications for humans, as well as for imaging large-animal models. Our group is currently interested in imaging the airways of newly developed cystic fibrosis (CF) animal models that display human-like lung disease, such as the CF pig. One key outcome measure for assessing the effectiveness of CF airway therapies is the ability of the lung to clear inhaled particulates by mucociliary transit (MCT). This study extends the ex vivo sheep and pig tracheal-tissue studies previously performed by the authors at the IMBL. In the present study, attempts were made to determine whether the design of the IMBL is suitable for imaging tracheal MCT in live pigs. The movement of 200 µm-diameter high-refractive-index (HRI) glass-bead marker particles deposited onto the tracheal airway surface of eight live piglets was tracked and quantified and the MCT response to aerosol delivery was examined. A high-resolution computed tomographic (CT) whole-animal post-mortem scan of one pig was also performed to verify the large sample CT capabilities of the IMBL. MCT tracking particles were visible in all animals, and the automated MCT tracking algorithms used were able to identify and track many particles, but accuracy was reduced when particles moved faster than ∼6 mm min-1 (50 pixels between exposures), or when the particles touched or overlapped. Renderings were successfully made from the CT data set. Technical issues prevented use of reliable shuttering and hence radiation doses were variable. Since dose must be carefully controlled in future studies, estimates of the minimum achievable radiation doses using this experiment design are shown. In summary, this study demonstrated the suitability of the IMBL for large-animal tracheal MCT imaging, and for whole-animal CT.


Assuntos
Aerossóis/administração & dosagem , Depuração Mucociliar/fisiologia , Tomografia Computadorizada por Raios X/métodos , Traqueia/diagnóstico por imagem , Imagem Corporal Total , Algoritmos , Animais , Austrália , Fibrose Cística/tratamento farmacológico , Fibrose Cística/fisiopatologia , Modelos Animais de Doenças , Técnicas In Vitro , Tamanho da Partícula , Projetos Piloto , Doses de Radiação , Suínos , Síncrotrons
9.
Respir Res ; 18(1): 95, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28511651

RESUMO

BACKGROUND: The Australian Synchrotron Imaging and Medical Beamline (IMBL) was designed as the world's widest synchrotron X-ray beam, enabling both clinical imaging and therapeutic applications for humans as well as the imaging of large animal models. Our group is developing methods for imaging the airways of newly developed CF animal models that display human-like lung disease, such as the CF pig, and we expect that the IMBL can be utilised to image airways in animals of this size. METHODS: This study utilised samples of excised tracheal tissue to assess the feasibility, logistics and protocols required for airway imaging in large animal models such as pigs and sheep at the IMBL. We designed an image processing algorithm to automatically track and quantify the tracheal mucociliary transport (MCT) behaviour of 103 µm diameter high refractive index (HRI) glass bead marker particles deposited onto the surface of freshly-excised normal sheep and pig tracheae, and assessed the effects of airway rehydrating aerosols. RESULTS: We successfully accessed and used scavenged tracheal tissue, identified the minimum bead size that is visible using our chosen imaging setup, verified that MCT could be visualised, and that our automated tracking algorithm could quantify particle motion. The imaging sequences show particles propelled by cilia, against gravity, up the airway surface, within a well-defined range of clearance speeds and with examples of 'clumping' behaviour that is consistent with the in vivo capture and mucus-driven transport of particles. CONCLUSION: This study demonstrated that the wide beam at the IMBL is suitable for imaging MCT in ex vivo tissue samples. We are now transitioning to in vivo imaging of MCT in live pigs, utilising higher X-ray energies and shorter exposures to minimise motion blur.


Assuntos
Depuração Mucociliar/fisiologia , Radiografia/métodos , Síncrotrons , Traqueia/diagnóstico por imagem , Traqueia/metabolismo , Animais , Tamanho da Partícula , Radiografia/instrumentação , Ovinos , Suínos , Raios X
10.
Sci Rep ; 6: 29438, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27461961

RESUMO

Computed tomography (CT) and spirometry are the mainstays of clinical pulmonary assessment. Spirometry is effort dependent and only provides a single global measure that is insensitive for regional disease, and as such, poor for capturing the early onset of lung disease, especially patchy disease such as cystic fibrosis lung disease. CT sensitively measures change in structure associated with advanced lung disease. However, obstructions in the peripheral airways and early onset of lung stiffening are often difficult to detect. Furthermore, CT imaging poses a radiation risk, particularly for young children, and dose reduction tends to result in reduced resolution. Here, we apply a series of lung tissue motion analyses, to achieve regional pulmonary function assessment in ß-ENaC-overexpressing mice, a well-established model of lung disease. The expiratory time constants of regional airflows in the segmented airway tree were quantified as a measure of regional lung function. Our results showed marked heterogeneous lung function in ß-ENaC-Tg mice compared to wild-type littermate controls; identified locations of airway obstruction, and quantified regions of bimodal airway resistance demonstrating lung compensation. These results demonstrate the applicability of regional lung function derived from lung motion as an effective alternative respiratory diagnostic tool.


Assuntos
Pneumopatias/diagnóstico por imagem , Pneumopatias/fisiopatologia , Testes de Função Respiratória/métodos , Algoritmos , Animais , Simulação por Computador , Feminino , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Movimento (Física) , Neutrófilos/metabolismo , Radiografia , Espirometria , Tomografia Computadorizada por Raios X , Raios X
12.
J Synchrotron Radiat ; 21(Pt 4): 768-73, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24971973

RESUMO

To assess potential therapies for respiratory diseases in which mucociliary transit (MCT) is impaired, such as cystic fibrosis and primary ciliary dyskinesia, a novel and non-invasive MCT quantification method has been developed in which the transit rate and behaviour of individual micrometre-sized deposited particles are measured in live mice using synchrotron phase-contrast X-ray imaging. Particle clearance by MCT is known to be a two-phase process that occurs over a period of minutes to days. Previous studies have assessed MCT in the fast-clearance phase, ∼20 min after marker particle dosing. The aim of this study was to non-invasively image changes in particle presence and MCT during the slow-clearance phase, and simultaneously determine whether repeat synchrotron X-ray imaging of mice was feasible over periods of 3, 9 and 25 h. All mice tolerated the repeat imaging procedure with no adverse effects. Quantitative image analysis revealed that the particle MCT rate and the number of particles present in the airway both decreased with time. This study successfully demonstrated for the first time that longitudinal synchrotron X-ray imaging studies are possible in live small animals, provided appropriate animal handling techniques are used and care is taken to reduce the delivered radiation dose.


Assuntos
Microesferas , Depuração Mucociliar/fisiologia , Mucosa Respiratória/diagnóstico por imagem , Mucosa Respiratória/fisiologia , Síncrotrons , Tomografia Computadorizada por Raios X/métodos , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Sci Rep ; 4: 3689, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24418935

RESUMO

To determine the efficacy of potential cystic fibrosis (CF) therapies we have developed a novel mucociliary transit (MCT) measurement that uses synchrotron phase contrast X-ray imaging (PCXI) to non-invasively measure the transit rate of individual micron-sized particles deposited into the airways of live mice. The aim of this study was to image changes in MCT produced by a rehydrating treatment based on hypertonic saline (HS), a current CF clinical treatment. Live mice received HS containing a long acting epithelial sodium channel blocker (P308); isotonic saline; or no treatment, using a nebuliser integrated within a small-animal ventilator circuit. Marker particle motion was tracked for 20 minutes using PCXI. There were statistically significant increases in MCT in the isotonic and HS-P308 groups. The ability to quantify in vivo changes in MCT may have utility in pre-clinical research studies designed to bring new genetic and pharmaceutical treatments for respiratory diseases into clinical trials.


Assuntos
Fibrose Cística/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Sistema Respiratório/diagnóstico por imagem , Solução Salina Hipertônica/administração & dosagem , Síncrotrons , Animais , Fibrose Cística/diagnóstico , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Cintilografia , Raios X
14.
PLoS One ; 8(1): e55822, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383288

RESUMO

In the airways of those with cystic fibrosis (CF), the leading pathophysiological hypothesis is that an ion channel defect results in a relative decrease in airway surface liquid (ASL) volume, producing thick and sticky mucus that facilitates the establishment and progression of early fatal lung disease. This hypothesis predicts that any successful CF airway treatment for this fundamental channel defect should increase the ASL volume, but up until now there has been no method of measuring this volume that would be compatible with in vivo monitoring. In order to accurately monitor the volume of the ASL, we have developed a new x-ray phase contrast imaging method that utilizes a highly attenuating reference grid. In this study we used this imaging method to examine the effect of a current clinical CF treatment, aerosolized hypertonic saline, on ASL depth in ex vivo normal mouse tracheas, as the first step towards non-invasive in vivo ASL imaging. The ex vivo tracheas were treated with hypertonic saline, isotonic saline or no treatment using a nebuliser integrated within a small animal ventilator circuit. Those tracheas exposed to hypertonic saline showed a transient increase in the ASL depth, which continued for nine minutes post-treatment, before returning to baseline by twelve minutes. These findings are consistent with existing measurements on epithelial cell cultures, and therefore suggest promise for the future development of in vivo testing of treatments. Our grid-based imaging technique measures the ASL depth with micron resolution, and can directly observe the effect of treatments expected to increase ASL depth, prior to any changes in overall lung health. The ability to non-invasively observe micron changes in the airway surface, particularly if achieved in an in vivo setting, may have potential in pre-clinical research designed to bring new treatments for CF and other airway diseases to clinical trials.


Assuntos
Fibrose Cística/diagnóstico por imagem , Líquido Extracelular , Mucosa Respiratória/metabolismo , Animais , Fibrose Cística/terapia , Feminino , Técnicas In Vitro , Camundongos , Radiografia , Fatores de Tempo , Traqueia/metabolismo
15.
J Synchrotron Radiat ; 17(6): 719-29, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20975216

RESUMO

During respiration, particles suspended in the air are inhaled and unless cleared by airway defences they can remain and affect lung health. Their size precludes the use of standard imaging modalities so we have developed synchrotron phase-contrast X-ray imaging (PCXI) methods to non-invasively monitor the behaviour of individual particles in live mouse airways. In this study we used these techniques to examine post-deposition particle behaviour in the trachea. PCXI was used to monitor the deposition and subsequent behaviour of particles of quarry dust and lead ore; fibres of asbestos and fibreglass; and hollow glass micro-spheres. Visibility was examined in vitro and ex vivo to avoid the complicating effects of surrounding tissue and respiratory or cardiac motion. Particle behaviour was then examined after deposition onto the tracheal airway surfaces of live mice. Each particle and fibre looked and behaved differently on the airway surface. Particles lodged on the airway shortly after deposition, and the rate at which this occurred was dependent on the particle type and size. After the live-imaging experiments, excised airway samples were examined using light and electron microscopy. Evidence of particle capture into the airway surface fluids and the epithelial cell layer was found. PCXI is a valuable tool for examining post-deposition particulate behaviour in the tracheal airway. These first indications that the interaction between airways and individual particles may depend on the particle type and size should provide a novel approach to studying the early effects of respired particles on airway health.


Assuntos
Poluentes Atmosféricos/metabolismo , Traqueia/metabolismo , Animais , Amianto/metabolismo , Células Epiteliais/metabolismo , Vidro , Substâncias Perigosas/metabolismo , Camundongos , Camundongos Pelados , Depuração Mucociliar , Tamanho da Partícula , Radiografia , Síncrotrons/instrumentação , Traqueia/citologia , Traqueia/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA