Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 12(13): e030073, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37382153

RESUMO

Background Data mining of electronic health records to identify patients suspected of familial hypercholesterolemia (FH) has been limited by absence of both phenotypic and genomic data in the same cohort. Methods and Results Using the Geisinger MyCode Community Health Initiative cohort (n=130 257), we ran 2 screening algorithms (Mayo Clinic [Mayo] and flag, identify, network, deliver [FIND] FH) to determine FH genetic and phenotypic diagnostic yields. With 29 243 excluded by Mayo (for secondary causes of hypercholesterolemia, no lipid value in electronic health records), 52 034 excluded by FIND FH (insufficient data to run the model), and 187 excluded for prior FH diagnosis, a final cohort of 59 729 participants was created. Genetic diagnosis was based on presence of a pathogenic or likely pathogenic variant in FH genes. Charts from 180 variant-negative participants (60 controls, 120 identified by FIND FH and Mayo) were reviewed to calculate Dutch Lipid Clinic Network scores; a score ≥5 defined probable phenotypic FH. Mayo flagged 10 415 subjects; 194 (1.9%) had a pathogenic or likely pathogenic FH variant. FIND FH flagged 573; 34 (5.9%) had a pathogenic or likely pathogenic variant, giving a net yield from both of 197 out of 280 (70%). Confirmation of a phenotypic diagnosis was constrained by lack of electronic health record data on physical findings or family history. Phenotypic FH by chart review was present by Mayo and/or FIND FH in 13 out of 120 versus 2 out of 60 not flagged by either (P<0.09). Conclusions Applying 2 recognized FH screening algorithms to the Geisinger MyCode Community Health Initiative identified 70% of those with a pathogenic or likely pathogenic FH variant. Phenotypic diagnosis was rarely achievable due to missing data.


Assuntos
Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Registros Eletrônicos de Saúde , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética
2.
Curr Atheroscler Rep ; 25(5): 197-208, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37060538

RESUMO

PURPOSE OF REVIEW: Genetic testing has proven utility in identifying and diagnosing individuals with FH. Here we outline the current landscape of genetic testing for FH, recommendations for testing practices and the efforts underway to improve access, availability, and uptake. RECENT FINDINGS: Alternatives to the traditional genetic testing and counseling paradigm for FH are being explored including expanding screening programs, testing in primary care and/or cardiology clinics, leveraging electronic communication tools like chatbots, and implementing direct contact approaches to facilitate genetic testing of both probands and at-risk relatives. There is no consensus on if, when, and how genetic testing or accompanying genetic counseling should be provided for FH, though traditional genetic counseling and/or testing in specialty lipid clinics is often recommended in expert statements and professional guidelines. More evidence is needed to determine whether alternative approaches to the implementation of genetic testing for FH may be more effective.


Assuntos
Testes Genéticos , Hiperlipoproteinemia Tipo II , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética
3.
BMC Health Serv Res ; 23(1): 340, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020233

RESUMO

BACKGROUND: This project aimed to optimize communication strategies to support family communication about familial hypercholesterolemia (FH) and improve cascade testing uptake among at-risk relatives. Individuals and families with FH provided feedback on multiple strategies including: a family letter, digital tools, and direct contact. METHODS: Feedback from participants was collected via dyadic interviews (n = 11) and surveys (n = 98) on communication strategies and their proposed implementation to improve cascade testing uptake. We conducted a thematic analysis to identify how to optimize each strategy. We categorized optimizations and their implementation within the project's healthcare system using a Traffic Light approach. RESULTS: Thematic analysis resulted in four distinct suggested optimizations for each communication strategy and seven suggested optimizations that were suitable across all strategies. Four suggestions for developing a comprehensive cascade testing program, which would offer all optimized communication strategies also emerged. All optimized suggestions coded green (n = 21) were incorporated. Suggestions coded yellow (n = 12) were partially incorporated. Only two suggestions were coded red and could not be incorporated. CONCLUSIONS: This project demonstrates how to collect and analyze stakeholder feedback for program design. We identified feasible suggested optimizations, resulting in communication strategies that are patient-informed and patient-centered. Optimized strategies were implemented in a comprehensive cascade testing program.


Assuntos
Hiperlipoproteinemia Tipo II , Humanos , Comunicação , Pacientes , Testes Genéticos
4.
Genet Med ; 24(3): 564-575, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34906490

RESUMO

PURPOSE: This study aimed to evaluate uptake and follow-up using internet-assisted population genetic testing (GT) for BRCA1/2 Ashkenazi Jewish founder pathogenic variants (AJPVs). METHODS: Across 4 cities in the United States, from December 2017 to March 2020, individuals aged ≥25 years with ≥1 Ashkenazi Jewish grandparent were offered enrollment. Participants consented and enrolled online with chatbot and video education, underwent BRCA1/2 AJPV GT, and chose to receive results from their primary care provider (PCP) or study staff. Surveys were conducted at baseline, at 12 weeks, and annually for 5 years. RESULTS: A total of 5193 participants enrolled and 4109 (79.1%) were tested (median age = 54, female = 77.1%). Upon enrollment, 35.1% of participants selected a PCP to disclose results, and 40.5% of PCPs agreed. Of those tested, 138 (3.4%) were AJPV heterozygotes of whom 21 (15.2%) had no significant family history of cancer, whereas 86 (62.3%) had a known familial pathogenic variant. At 12 weeks, 85.5% of participants with AJPVs planned increased cancer screening; only 3.7% with negative results and a significant family history reported further testing. CONCLUSION: Although continued follow-up is needed, internet-enabled outreach can expand access to targeted GT using a medical model. Observed challenges for population genetic screening efforts include recruitment barriers, improving PCP engagement, and increasing uptake of additional testing when indicated.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Adulto , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Internet , Judeus/genética , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA