RESUMO
Imbalances in lipid storage and secretion lead to the accumulation of hepatocyte lipid droplets (LDs) (i.e., hepatic steatosis). Our understanding of the mechanisms that govern the channeling of hepatocyte neutral lipids towards cytosolic LDs or secreted lipoproteins remains incomplete. Here, we performed a series of CRISPR-Cas9 screens under different metabolic states to uncover mechanisms of hepatic neutral lipid flux. Clustering of chemical-genetic interactions identified CLIC-like chloride channel 1 (CLCC1) as a critical regulator of neutral lipid storage and secretion. Loss of CLCC1 resulted in the buildup of large LDs in hepatoma cells and knockout in mice caused liver steatosis. Remarkably, the LDs are in the lumen of the ER and exhibit properties of lipoproteins, indicating a profound shift in neutral lipid flux. Finally, remote homology searches identified a domain in CLCC1 that is homologous to yeast Brl1p and Brr6p, factors that promote the fusion of the inner and outer nuclear envelopes during nuclear pore complex assembly. Loss of CLCC1 lead to extensive nuclear membrane herniations, consistent with impaired nuclear pore complex assembly. Thus, we identify CLCC1 as the human Brl1p/Brr6p homolog and propose that CLCC1-mediated membrane remodeling promotes hepatic neutral lipid flux and nuclear pore complex assembly.
RESUMO
ABSTRACT: The t(1;19) translocation, encoding the oncogenic fusion protein E2A (TCF3)-PBX1, is involved in acute lymphoblastic leukemia (ALL) and associated with a pre-B-cell receptor (preBCR+) phenotype. Relapse in patients with E2A-PBX1+ ALL frequently occurs in the central nervous system (CNS). Therefore, there is a medical need for the identification of CNS active regimens for the treatment of E2A-PBX1+/preBCR+ ALL. Using unbiased short hairpin RNA (shRNA) library screening approaches, we identified Bruton tyrosine kinase (BTK) as a key gene involved in both proliferation and dasatinib sensitivity of E2A-PBX1+/preBCR+ ALL. Depletion of BTK by shRNAs resulted in decreased proliferation of dasatinib-treated E2A-PBX1+/preBCR+ cells compared with control-transduced cells. Moreover, the combination of dasatinib with BTK inhibitors (BTKi; ibrutinib, acalabrutinib, or zanubrutinib) significantly decreased E2A-PBX1+/preBCR+ human and murine cell proliferation, reduced phospholipase C gamma 2 (PLCG2) and BTK phosphorylation and total protein levels and increased disease-free survival of mice in secondary transplantation assays, particularly reducing CNS-leukemic infiltration. Hence, dasatinib with ibrutinib reduced pPLCG2 and pBTK in primary ALL patient samples, including E2A-PBX1+ ALLs. In summary, genetic depletion and pharmacological inhibition of BTK increase dasatinib effects in human and mouse with E2A-PBX1+/preBCR+ ALL across most of performed assays, with the combination of dasatinib and BTKi proving effective in reducing CNS infiltration of E2A-PBX1+/preBCR+ ALL cells in vivo.
Assuntos
Tirosina Quinase da Agamaglobulinemia , Dasatinibe , Inibidores de Proteínas Quinases , Dasatinibe/uso terapêutico , Dasatinibe/farmacologia , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Humanos , Animais , Camundongos , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacosRESUMO
Selectively ablating damaged cells is an evolving therapeutic approach for age-related disease. Current methods for genome-wide screens to identify genes whose deletion might promote the death of damaged or senescent cells are generally underpowered because of the short timescales of cell death as well as the difficulty of scaling non-dividing cells. Here, we establish "Death-seq," a positive-selection CRISPR screen optimized to identify enhancers and mechanisms of cell death. Our screens identified synergistic enhancers of cell death induced by the known senolytic ABT-263. The screen also identified inducers of cell death and senescent cell clearance in models of age-related diseases by a related compound, ABT-199, which alone is not senolytic but exhibits less toxicity than ABT-263. Death-seq enables the systematic screening of cell death pathways to uncover molecular mechanisms of regulated cell death subroutines and identifies drug targets for the treatment of diverse pathological states such as senescence, cancer, and fibrosis.
Assuntos
Senescência Celular , Senoterapia , Senescência Celular/genética , Morte Celular , Compostos de AnilinaRESUMO
Gene regulation in eukaryotes relies on many mechanisms for optimal expression, including both protein transcription factors and DNA regulatory elements. CRISPR-based screens of both protein coding genes and non-coding regions have allowed identification of these transcriptional networks in human cells. Double-stranded DNA viruses also invoke human-like regulation to control transcription of viral genes that are required at different stages of the viral lifecycle. Here, we applied CRISPR-based tools to dissect regulation of a viral gene at high resolution in the oncogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV), whose compact, densely encoded genome provides unique challenges and opportunities for studying transcriptional networks. Through a combination of CRISPR-interference (CRISPRi) and Cas9 nuclease screening, we mapped a novel regulatory network comprised of coding and noncoding elements that influence expression of the essential KSHV protein ORF68 at early and late stages of the viral lifecycle. ORF68 encodes an essential protein involved in packaging the replicated viral DNA into nascent capsids. Although ORF68 expression initiates early in the viral lifecycle, we found that it is primarily required at later times. This work demonstrates the ability to exhaustively identify features controlling a given locus, capturing a complete viral regulatory circuit that functions within the human nucleus to control transcription.
RESUMO
Viruses encode transcriptional regulatory proteins critical for controlling viral and host gene expression. Given their multifunctional nature and high sequence divergence, it is unclear which viral proteins can affect transcription and which specific sequences contribute to this function. Using a high-throughput assay, we measured the transcriptional regulatory potential of over 60,000 protein tiles across â¼1,500 proteins from 11 coronaviruses and all nine human herpesviruses. We discovered hundreds of transcriptional effector domains, including a conserved repression domain in all coronavirus Spike homologs, dual activation-repression domains in viral interferon regulatory factors (VIRFs), and an activation domain in six herpesvirus homologs of the single-stranded DNA-binding protein that we show is important for viral replication and late gene expression in Kaposi's sarcoma-associated herpesvirus (KSHV). For the effector domains we identified, we investigated their mechanisms via high-throughput sequence and chemical perturbations, pinpointing sequence motifs essential for function. This work massively expands viral protein annotations, serving as a springboard for studying their biological and health implications and providing new candidates for compact gene regulation tools.
Assuntos
Herpesvirus Humano 8 , Humanos , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Replicação Viral/genética , Regulação da Expressão GênicaRESUMO
During erythroid differentiation, the maintenance of genome integrity is key for the success of multiple rounds of cell division. However, molecular mechanisms coordinating the expression of DNA repair machinery in erythroid progenitors are poorly understood. Here, we discover that an RNA N6-methyladenosine (m6A) methyltransferase, METTL16, plays an essential role in proper erythropoiesis by safeguarding genome integrity via the control of DNA-repair-related genes. METTL16-deficient erythroblasts exhibit defective differentiation capacity, DNA damage and activation of the apoptotic program. Mechanistically, METTL16 controls m6A deposition at the structured motifs in DNA-repair-related transcripts including Brca2 and Fancm mRNAs, thereby upregulating their expression. Furthermore, a pairwise CRISPRi screen revealed that the MTR4-nuclear RNA exosome complex is involved in the regulation of METTL16 substrate mRNAs in erythroblasts. Collectively, our study uncovers that METTL16 and the MTR4-nuclear RNA exosome act as essential regulatory machinery to maintain genome integrity and erythropoiesis.
Assuntos
Eritropoese , Metiltransferases , Metiltransferases/metabolismo , Metilação , Eritropoese/genética , Adenosina/metabolismo , RNA Mensageiro/metabolismo , Eritroblastos/metabolismo , DNA/metabolismoRESUMO
B-cell precursor acute lymphoblastic leukemias (B-ALL) are characterized by the activation of signaling pathways, which are involved in survival and proliferation of leukemia cells. Using an unbiased shRNA library screen enriched for targeting signaling pathways, we identified MTOR as the key gene on which human B-ALL E2A-PBX1+ RCH-ACV cells are dependent. Using genetic and pharmacologic approaches, we investigated whether B-ALL cells depend on MTOR upstream signaling pathways including PI3K/AKT and the complexes MTORC1 or MTORC2 for proliferation and survival in vitro and in vivo. Notably, the combined inhibition of MTOR and AKT shows a synergistic effect on decreased cell proliferation in B-ALL with different karyotypes. Hence, B-ALL cells were more dependent on MTORC2 rather than MTORC1 complex in genetic assays. Using cell metabolomics, we identified changes in mitochondrial fuel oxidation after shRNA-mediated knockdown or pharmacological inhibition of MTOR. Dependence of the cells on fatty acid metabolism for their energy production was increased upon inhibition of MTOR and associated upstream signaling pathways, disclosing a possible target for a combination therapy. In conclusion, B-ALL are dependent on the PI3K/AKT/MTOR signaling pathway and the combination of specific small molecules targeting this pathway appears to be promising for the treatment of B-ALL patients.
Assuntos
Fosfatidilinositol 3-Quinases , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , RNA Interferente Pequeno , Transdução de Sinais , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proliferação de Células , Linhagem Celular TumoralRESUMO
While traditional methods for studying large DNA viruses allow the creation of individual mutants, CRISPR/Cas9 can be used to rapidly create thousands of mutant dsDNA viruses in parallel, enabling the pooled screening of entire viral genomes. Here, we applied this approach to Kaposi's sarcoma-associated herpesvirus (KSHV) by designing a sgRNA library containing all possible ~22,000 guides targeting the 154 kilobase viral genome, corresponding to one cut site approximately every 8 base pairs. We used the library to profile viral sequences involved in transcriptional activation of late genes, whose regulation involves several well characterized features including dependence on viral DNA replication and a known set of viral transcriptional activators. Upon phenotyping all possible Cas9-targeted viruses for transcription of KSHV late genes we recovered these established regulators and identified a new required factor (ORF46), highlighting the utility of the screening pipeline. By performing targeted deep sequencing of the viral genome to distinguish between knock-out and in-frame alleles created by Cas9, we identify the DNA binding but not catalytic domain of ORF46 to be required for viral DNA replication and thus late gene expression. Our pooled Cas9 tiling screen followed by targeted deep viral sequencing represents a two-tiered screening paradigm that may be widely applicable to dsDNA viruses.
Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Genes Virais/genética , Herpesvirus Humano 8/genética , Sistemas CRISPR-Cas , Células HEK293 , HumanosRESUMO
Although TP53 is the most commonly mutated gene in human cancers, the p53-dependent transcriptional programs mediating tumor suppression remain incompletely understood. Here, to uncover critical components downstream of p53 in tumor suppression, we perform unbiased RNAi and CRISPR-Cas9-based genetic screens in vivo. These screens converge upon the p53-inducible gene Zmat3, encoding an RNA-binding protein, and we demonstrate that ZMAT3 is an important tumor suppressor downstream of p53 in mouse KrasG12D-driven lung and liver cancers and human carcinomas. Integrative analysis of the ZMAT3 RNA-binding landscape and transcriptomic profiling reveals that ZMAT3 directly modulates exon inclusion in transcripts encoding proteins of diverse functions, including the p53 inhibitors MDM4 and MDM2, splicing regulators, and components of varied cellular processes. Interestingly, these exons are enriched in NMD signals, and, accordingly, ZMAT3 broadly affects target transcript stability. Collectively, these studies reveal ZMAT3 as a novel RNA-splicing and homeostasis regulator and a key component of p53-mediated tumor suppression.
Assuntos
Proteínas de Ligação a RNA/genética , Proteína Supressora de Tumor p53/genética , Adenocarcinoma/genética , Processamento Alternativo , Animais , Proteínas de Ciclo Celular/metabolismo , Éxons , Perfilação da Expressão Gênica/métodos , Genes Supressores de Tumor , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Interferência de RNA , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/metabolismoRESUMO
Among high-grade brain tumors, glioblastoma is particularly difficult to treat, in part due to its highly infiltrative nature which contributes to the malignant phenotype and high mortality in patients. In order to better understand the signaling pathways underlying glioblastoma invasion, we performed the first large-scale CRISPR-Cas9 loss of function screen specifically designed to identify genes that facilitate cell invasion. We tested 4,574 genes predicted to be involved in trafficking and motility. Using a transwell invasion assay, we discovered 33 genes essential for invasion. Of the 11 genes we selected for secondary testing using a wound healing assay, 6 demonstrated a significant decrease in migration. The strongest regulator of invasion was mitogen-activated protein kinase 4 (MAP4K4). Targeting of MAP4K4 with single guide RNAs or a MAP4K4 inhibitor reduced migration and invasion in vitro. This effect was consistent across three additional patient derived glioblastoma cell lines. Analysis of epithelial-mesenchymal transition markers in U138 cells with lack or inhibition of MAP4K4 demonstrated protein expression consistent with a non-invasive state. Importantly, MAP4K4 inhibition limited migration in a subset of human glioma organotypic slice cultures. Our results identify MAP4K4 as a novel potential therapeutic target to limit glioblastoma invasion.
Assuntos
Neoplasias Encefálicas/patologia , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Glioblastoma/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Encefálicas/genética , Glioblastoma/genética , Humanos , Invasividade Neoplásica/genéticaRESUMO
Pooled CRISPR-Cas9 screens are a powerful method for functionally characterizing regulatory elements in the non-coding genome, but off-target effects in these experiments have not been systematically evaluated. Here, we investigate Cas9, dCas9, and CRISPRi/a off-target activity in screens for essential regulatory elements. The sgRNAs with the largest effects in genome-scale screens for essential CTCF loop anchors in K562 cells were not single guide RNAs (sgRNAs) that disrupted gene expression near the on-target CTCF anchor. Rather, these sgRNAs had high off-target activity that, while only weakly correlated with absolute off-target site number, could be predicted by the recently developed GuideScan specificity score. Screens conducted in parallel with CRISPRi/a, which do not induce double-stranded DNA breaks, revealed that a distinct set of off-targets also cause strong confounding fitness effects with these epigenome-editing tools. Promisingly, filtering of CRISPRi libraries using GuideScan specificity scores removed these confounded sgRNAs and enabled identification of essential regulatory elements.
Assuntos
Sistemas CRISPR-Cas , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , RNA Guia de Cinetoplastídeos/genética , Elementos Reguladores de Transcrição/genética , Biologia Computacional/métodos , Epigênese Genética/genética , Epigenômica/métodos , Edição de Genes/métodos , Células HEK293 , Humanos , Células K562RESUMO
Antibody-drug conjugates (ADCs) selectively deliver chemotherapeutic agents to target cells and are important cancer therapeutics. However, the mechanisms by which ADCs are internalized and activated remain unclear. Using CRISPR-Cas9 screens, we uncover many known and novel endolysosomal regulators as modulators of ADC toxicity. We identify and characterize C18ORF8/RMC1 as a regulator of ADC toxicity through its role in endosomal maturation. Through comparative analysis of screens with ADCs bearing different linkers, we show that a subset of late endolysosomal regulators selectively influence toxicity of noncleavable linker ADCs. Surprisingly, we find cleavable valine-citrulline linkers can be processed rapidly after internalization without lysosomal delivery. Lastly, we show that sialic acid depletion enhances ADC lysosomal delivery and killing in diverse cancer cell types, including with FDA (US Food and Drug Administration)-approved trastuzumab emtansine (T-DM1) in Her2-positive breast cancer cells. Together, these results reveal new regulators of endolysosomal trafficking, provide important insights for ADC design and identify candidate combination therapy targets.
Assuntos
Sistemas CRISPR-Cas , Estudo de Associação Genômica Ampla , Imunoconjugados/toxicidade , Maitansina/análogos & derivados , Ácido N-Acetilneuramínico/farmacologia , Trastuzumab/farmacologia , Ado-Trastuzumab Emtansina , Antineoplásicos Imunológicos/farmacologia , Proteínas de Transporte , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Lisossomos , Maitansina/farmacologiaRESUMO
Extracellular vesicles mediate transfer of biologically active molecules between neighboring or distant cells, and these vesicles may play important roles in normal physiology and the pathogenesis of multiple disease states including cancer. However, the underlying molecular mechanisms of their biogenesis and release remain unknown. We designed artificially barcoded, exosomal microRNAs (bEXOmiRs) to monitor extracellular vesicle release quantitatively using deep sequencing. We then expressed distinct pairs of CRISPR guide RNAs and bEXOmiRs, enabling identification of genes influencing bEXOmiR secretion from Cas9-edited cells. This approach uncovered genes with unrecognized roles in multivesicular endosome exocytosis, including critical roles for Wnt signaling in extracellular vesicle release regulation. Coupling bEXOmiR reporter analysis with CRISPR-Cas9 screening provides a powerful and unbiased means to study extracellular vesicle biology and for the first time, to associate a nucleic acid tag with individual membrane vesicles.
Assuntos
Vesículas Extracelulares/genética , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , Células A549 , Sequência de Bases , Sistemas CRISPR-Cas , Endossomos/metabolismo , Exocitose , Exossomos/genética , Redes Reguladoras de Genes , Células HEK293 , Células HeLa , Humanos , Corpos Multivesiculares/metabolismoRESUMO
Dasatinib is a multi-tyrosine kinase inhibitor approved for treatment of Ph+ acute lymphoblastic leukemia (ALL), but its efficacy is limited by resistance. Recent preclinical studies suggest that dasatinib may be a candidate therapy in additional ALL subtypes including pre-BCR+ ALL. Here we utilized shRNA library screening and global transcriptomic analysis to identify several novel genes and pathways that may enhance dasatinib efficacy or mitigate potential resistance in human pre-BCR+ ALL. Depletion of the transcriptional coactivator CBP increased dasatinib sensitivity by downregulating transcription of the pre-BCR signaling pathway previously associated with dasatinib sensitivity. Acquired resistance was due, in part, to upregulation of alternative pathways including WNT through a mechanism, suggesting transcriptional plasticity. Small molecules that disrupt CBP interactions with the CREB KID domain or ß-catenin showed promising preclinical efficacy in combination with dasatinib. These findings highlight novel modulators of sensitivity to targeted therapies in human pre-BCR+ ALL, which can be reversed by small-molecule inhibitors. They also identify promising therapeutic approaches to ameliorate dasatinib sensitivity and prevent resistance in ALL.Significance: These findings reveal mechanisms that modulate sensitivity to dasatinib and suggest therapeutic strategies to improve the outcome of patients with acute lymphoblastic leukemia.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/22/6497/F1.large.jpg Cancer Res; 78(22); 6497-508. ©2018 AACR.
Assuntos
Antineoplásicos/farmacologia , Proteína de Ligação a CREB/metabolismo , Dasatinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Ligação Proteica , Domínios Proteicos , Pirimidinas/farmacologia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Transcrição Gênica , beta Catenina/genéticaRESUMO
Cancer cells exploit the expression of the programmed death-1 (PD-1) ligand 1 (PD-L1) to subvert T-cell-mediated immunosurveillance. The success of therapies that disrupt PD-L1-mediated tumour tolerance has highlighted the need to understand the molecular regulation of PD-L1 expression. Here we identify the uncharacterized protein CMTM6 as a critical regulator of PD-L1 in a broad range of cancer cells, by using a genome-wide CRISPR-Cas9 screen. CMTM6 is a ubiquitously expressed protein that binds PD-L1 and maintains its cell surface expression. CMTM6 is not required for PD-L1 maturation but co-localizes with PD-L1 at the plasma membrane and in recycling endosomes, where it prevents PD-L1 from being targeted for lysosome-mediated degradation. Using a quantitative approach to profile the entire plasma membrane proteome, we find that CMTM6 displays specificity for PD-L1. Notably, CMTM6 depletion decreases PD-L1 without compromising cell surface expression of MHC class I. CMTM6 depletion, via the reduction of PD-L1, significantly alleviates the suppression of tumour-specific T cell activity in vitro and in vivo. These findings provide insights into the biology of PD-L1 regulation, identify a previously unrecognized master regulator of this critical immune checkpoint and highlight a potential therapeutic target to overcome immune evasion by tumour cells.
Assuntos
Antígeno B7-H1/biossíntese , Antígeno B7-H1/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Antígeno B7-H1/imunologia , Sistemas CRISPR-Cas , Linhagem Celular , Membrana Celular/metabolismo , Endossomos/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Lisossomos/metabolismo , Camundongos , Proteólise , Proteoma/metabolismo , Especificidade por Substrato , Linfócitos T/imunologia , Linfócitos T/metabolismo , Evasão Tumoral/imunologiaRESUMO
Identification of effective combination therapies is critical to address the emergence of drug-resistant cancers, but direct screening of all possible drug combinations is infeasible. Here we introduce a CRISPR-based double knockout (CDKO) system that improves the efficiency of combinatorial genetic screening using an effective strategy for cloning and sequencing paired single guide RNA (sgRNA) libraries and a robust statistical scoring method for calculating genetic interactions (GIs) from CRISPR-deleted gene pairs. We applied CDKO to generate a large-scale human GI map, comprising 490,000 double-sgRNAs directed against 21,321 pairs of drug targets in K562 leukemia cells and identified synthetic lethal drug target pairs for which corresponding drugs exhibit synergistic killing. These included the BCL2L1 and MCL1 combination, which was also effective in imatinib-resistant cells. We further validated this system by identifying known and previously unidentified GIs between modifiers of ricin toxicity. This work provides an effective strategy to screen synergistic drug combinations in high-throughput and a CRISPR-based tool to dissect functional GI networks.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Proteínas de Neoplasias/genética , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Sinergismo Farmacológico , Humanos , Células K562RESUMO
We compared the ability of short hairpin RNA (shRNA) and CRISPR/Cas9 screens to identify essential genes in the human chronic myelogenous leukemia cell line K562. We found that the precision of the two libraries in detecting essential genes was similar and that combining data from both screens improved performance. Notably, results from the two screens showed little correlation, which can be partially explained by the identification of distinct essential biological processes with each technology.
Assuntos
Proteínas Associadas a CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genes Essenciais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Interferente Pequeno/genética , Testes Genéticos/métodos , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Broad-spectrum antiviral drugs targeting host processes could potentially treat a wide range of viruses while reducing the likelihood of emergent resistance. Despite great promise as therapeutics, such drugs remain largely elusive. Here we used parallel genome-wide high-coverage short hairpin RNA (shRNA) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screens to identify the cellular target and mechanism of action of GSK983, a potent broad-spectrum antiviral with unexplained cytotoxicity. We found that GSK983 blocked cell proliferation and dengue virus replication by inhibiting the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH). Guided by mechanistic insights from both genomic screens, we found that exogenous deoxycytidine markedly reduced GSK983 cytotoxicity but not antiviral activity, providing an attractive new approach to improve the therapeutic window of DHODH inhibitors against RNA viruses. Our results highlight the distinct advantages and limitations of each screening method for identifying drug targets, and demonstrate the utility of parallel knockdown and knockout screens for comprehensive probing of drug activity.
Assuntos
Antivirais/farmacologia , Sistemas CRISPR-Cas/genética , Carbazóis/farmacologia , Lentivirus/efeitos dos fármacos , RNA Interferente Pequeno/genética , Carbazóis/química , Linhagem Celular Tumoral , Clonagem Molecular , Humanos , Lentivirus/fisiologiaRESUMO
Translation, coded peptide synthesis, arguably exists at the heart of modern cellular life. By orchestrating an incredibly complex interaction between tRNAs, mRNAs, aaRSs, the ribosome, and numerous other small molecules, the translational system allows the interpretation of data in the form of DNA to create massively complex proteins which control and enact almost every cellular function. A natural question then, is how did this system evolve? Here we present a broad review of the existing theories of the last two decades on the origin of the translational system. We attempt to synthesize the wide variety of ideas as well as organize them into modular components, addressing the evolution of the peptide-RNA interaction, tRNA, mRNA, the ribosome, and the first proteins separately. We hope to provide both a comprehensive overview of the literature as well as a framework for future discussions and novel theories.
Assuntos
Biossíntese de Proteínas/fisiologia , Proteínas/química , Proteínas/genética , Aminoácidos/química , Aminoácidos/genética , Peptídeos/química , Peptídeos/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA de Transferência/química , RNA de Transferência/genética , Ribossomos , Análise de Sequência de Proteína/métodosRESUMO
While all ciliates possess nuclear dimorphism, several ciliates - like those in the classes Phyllopharyngea, Spirotrichea, and Armophorea - have an extreme macronuclear organization. Their extensively fragmented macronuclei contain upwards of 20,000 chromosomes, each with upwards of thousands of copies. These features have evolved independently on multiple occasions throughout ciliate evolutionary history, and currently no models explain these structures in an evolutionary context. In this paper, we propose that competition between two forces - the limitation and avoidance of chromosomal imbalances as a ciliate undergoes successive asexual divisions, and the costs of replicating massive genomes - is sufficient to explain this particular nuclear structure. We present a simulation of ciliate cell evolution under control of these forces, allowing certain features of the population to change over time. Over a wide range of parameters, we observe the repeated emergence of this unusual genomic organization found in nature. Although much remains to be understood about the evolution of macronuclear genome organization, our results show that the proposed model is a plausible explanation for the emergence of these extremely fragmented, highly polyploid genomes.