Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sci Rep ; 11(1): 14922, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290274

RESUMO

The GNA15 gene is ectopically expressed in human pancreatic ductal adenocarcinoma cancer cells. The encoded Gα15 protein can promiscuously redirect GPCR signaling toward pathways with oncogenic potential. We sought to describe the distribution of GNA15 in adenocarcinoma from human pancreatic specimens and to analyze the mechanism driving abnormal expression and the consequences on signaling and clinical follow-up. We detected GNA15 expression in pre-neoplastic pancreatic lesions and throughout progression. The analysis of biological data sets, primary and xenografted human tumor samples, and clinical follow-up shows that elevated expression is associated with poor prognosis for GNA15, but not any other GNA gene. Demethylation of the 5' GNA15 promoter region was associated with ectopic expression of Gα15 in pancreatic neoplastic cells, but not in adjacent dysplastic or non-transformed tissue. Down-modulation of Gα15 by shRNA or CRISPR/Cas9 affected oncogenic signaling, and reduced adenocarcimoma cell motility and invasiveness. We conclude that de novo expression of wild-type GNA15 characterizes transformed pancreatic cells. The methylation pattern of GNA15 changes in preneoplastic lesions coincident with the release a transcriptional blockade that allows ectopic expression to persist throughout PDAC progression. Elevated GNA15 mRNA correlates with poor prognosis. In addition, ectopic Gα15 signaling provides an unprecedented mechanism in the early steps of pancreas carcinogenesis distinct from classical G protein oncogenic mutations described previously in GNAS and GNAQ/GNA11.


Assuntos
Carcinoma Ductal Pancreático/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pancreáticas/genética , Sistemas CRISPR-Cas , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica/genética , Humanos , Metilação , Invasividade Neoplásica/genética , Neoplasias Pancreáticas/patologia , Prognóstico , Regiões Promotoras Genéticas/genética , RNA Mensageiro , RNA Interferente Pequeno , Transdução de Sinais
2.
Sci Rep ; 10(1): 18764, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127953

RESUMO

Droplet digital PCR (ddPCR) is a sensitive and reproducible technology widely used for quantitation of several viruses. The aim of this study was to evaluate the 2019-nCoV CDC ddPCR Triplex Probe Assay (BioRad) performance, comparing the direct quantitation of SARS-CoV-2 on nasopharyngeal swab with the procedure applied to the extracted RNA. Moreover, two widely used swab types were compared (UTM 3 mL and ESwab 1 mL, COPAN). A total of 50 nasopharyngeal swabs (n = 25 UTM 3 mL and n = 25 ESwab 1 mL) from SARS-CoV-2 patients, collected during the pandemic at IRCCS Sacro Cuore Don Calabria Hospital (Veneto Region, North-East Italy), were used for our purpose. After heat inactivation, an aliquot of swab medium was used for the direct quantitation. Then, we compared the direct method with the quantitation performed on the RNA purified from nasopharyngeal swab by automated extraction. We observed that the direct approach achieved generally equal RNA copies compared to the extracted RNA. The results with the direct quantitation were more accurate on ESwab with a sensitivity of 93.33% [95% CI, 68.05 to 99.83] and specificity of 100.00% for both N1 and N2. On the other hand, on UTM we observed a higher rate of discordant results for N1 and N2. The human internal amplification control (RPP30) showed 100% of both sensitivity and specificity independent of swabs and approaches. In conclusion, we described a direct quantitation of SARS-CoV-2 in nasopharyngeal swab. Our approach resulted in an efficient quantitation, without automated RNA extraction and purification. However, special care needs to be taken on the potential bias due to the conservation of samples and to the heating treatment, as we used thawed and heat inactivated material. Further studies on a larger cohort of samples are warranted to evaluate the clinical value of this direct approach.


Assuntos
Técnicas de Laboratório Clínico/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Betacoronavirus/genética , Betacoronavirus/patogenicidade , Teste para COVID-19 , Técnicas de Laboratório Clínico/normas , Infecções por Coronavirus/diagnóstico , Humanos , Limite de Detecção , Reação em Cadeia da Polimerase Multiplex/normas , Reprodutibilidade dos Testes , Mucosa Respiratória/virologia , SARS-CoV-2
3.
Cells ; 8(11)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683926

RESUMO

Osteoarthritis (OA) is predominantly characterized by the progressive degradation of articular cartilage, the connective tissue produced by chondrocytes, due to an imbalance between anabolic and catabolic processes. In addition, physical activity (PA) is recognized as an important tool for counteracting OA. To evaluate PA effects on the chondrocyte lineage, we analyzed the expression of SOX9, COL2A1, and COMP in circulating progenitor cells following a half marathon (HM) performance. Therefore, we studied in-depth the involvement of metabolites affecting chondrocyte lineage, and we compared the metabolomic profile associated with PA by analyzing runners' sera before and after HM performance. Interestingly, this study highlighted that metabolites involved in vitamin B6 salvage, such as pyridoxal 5'-phosphate and pyridoxamine 5'-phosphate, were highly modulated. To evaluate the effects of vitamin B6 in cartilage cells, we treated differentiated mesenchymal stem cells and the SW1353 chondrosarcoma cell line with vitamin B6 in the presence of IL1ß, the inflammatory cytokine involved in OA. Our study describes, for the first time, the modulation of the vitamin B6 salvage pathway following PA and suggests a protective role of PA in OA through modulation of this pathway.


Assuntos
Cartilagem/metabolismo , Condrócitos/metabolismo , Exercício Físico/fisiologia , Adulto , Atletas , Cartilagem/fisiologia , Proteína de Matriz Oligomérica de Cartilagem/análise , Proteína de Matriz Oligomérica de Cartilagem/sangue , Cartilagem Articular/metabolismo , Cartilagem Articular/fisiologia , Linhagem Celular , Células Cultivadas , Condrócitos/fisiologia , Colágeno Tipo II/análise , Colágeno Tipo II/sangue , Proteínas de Drosophila/análise , Proteínas de Drosophila/sangue , Feminino , Humanos , Interleucina-1beta , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Metabolômica/métodos , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Osteoartrite/fisiopatologia , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/fisiopatologia , Fatores de Transcrição SOX9/análise , Fatores de Transcrição SOX9/sangue , Vitamina B 6/metabolismo
4.
Cells ; 7(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463392

RESUMO

The mortality rate for malignant melanoma (MM) is very high, since it is highly invasive and resistant to chemotherapeutic treatments. The modulation of some transcription factors affects cellular processes in MM. In particular, a higher expression of the osteogenic master gene RUNX2 has been reported in melanoma cells, compared to normal melanocytes. By analyzing public databases for recurrent RUNX2 genetic and epigenetic modifications in melanoma, we found that the most common RUNX2 genetic alteration that exists in transcription upregulation is, followed by genomic amplification, nucleotide substitution and multiple changes. Additionally, altered RUNX2 is involved in unchecked pathways promoting tumor progression, Epithelial Mesenchymal Transition (EMT), and metastasis. In order to investigate further the role of RUNX2 in melanoma development and to identify a therapeutic target, we applied the CRISPR/Cas9 technique to explore the role of the RUNT domain of RUNX2 in a melanoma cell line. RUNT-deleted cells showed reduced proliferation, increased apoptosis, and reduced EMT features, suggesting the involvement of the RUNT domain in different pathways. In addition, del-RUNT cells showed a downregulation of genes involved in migration ability. In an in vivo zebrafish model, we observed that wild-type melanoma cells migrated in 81% of transplanted fishes, while del-RUNT cells migrated in 58%. All these findings strongly suggest the involvement of the RUNT domain in melanoma metastasis and cell migration and indicate RUNX2 as a prospective target in MM therapy.

5.
Oncotarget ; 9(14): 11489-11502, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29545914

RESUMO

Melanoma is an aggressive skin cancer; an early detection of the primary tumor may improve its prognosis. Despite many genes have been shown to be involved in melanoma, the full framework of melanoma transformation has not been completely explored. The characterization of pathways involved in tumor restraint in in vitro models may help to identify oncotarget genes. We therefore aimed to probe novel oncotargets through an integrated approach involving proteomic, gene expression and bioinformatic analysis We investigated molecular modulations in melanoma cells treated with ascorbic acid, which is known to inhibit cancer growth at high concentrations. For this purpose a proteomic approach was applied. A deeper insight into ascorbic acid anticancer activity was achieved; the discovery of deregulated processes suggested further biomarkers. In addition, we evaluated the expression of identified genes as well as the migration ability in several melanoma cell lines. Data obtained by a multidisciplinary approach demonstrated the involvement of Enolase 1 (ENO1), Parkinsonism-associated deglycase (PARK7), Prostaglansin E synthase 3 (PTGES3), Nucleophosmin (NPM1), Stathmin 1 (STMN1) genes in cell transformation and identified Single stranded DNA binding protein 1 (SSBP1) as a possible onco-suppressor in melanoma cancer.

6.
Int J Mol Sci ; 18(6)2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28608802

RESUMO

Bisphosphonates are well known inhibitors of osteoclast activity and thus may be employed to influence osteoblast activity. The present study was designed to evaluate the in vivo effects of zoledronic acid (ZA) on the proliferation and osteoblastic commitment of mesenchymal stem cells (MSC) in osteoporotic patients. We studied 22 postmenopausal osteoporotic patients. Densitometric, biochemical, cellular and molecular data were collected before as well as after 6 and 12 months of ZA treatment. Peripheral blood MSC-like cells were quantified by colony-forming unit fibroblastic assay; their osteogenic differentiation potential was evaluated after 3 and 7 days of induction, respectively. Circulating MSCs showed significantly increased expression levels of osteoblastic marker genes such as Runt-related transcription factor 2 (RUNX2), and Osteonectin (SPARC) during the 12 months of monitoring time. Lumbar bone mineral density (BMD) variation and SPARC gene expression correlated positively. Bone turnover marker levels were significantly lowered after ZA treatment; the effect was more pronounced for C terminal telopeptide (CTX) than for Procollagen Type 1 N-Terminal Propeptide (P1NP) and bone alkaline phosphatase (bALP). Our findings suggest a discrete anabolic activity supported by osteogenic commitment of MSCs, consequent to ZA treatment. We confirm its anabolic effects in vivo on osteogenic precursors.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/uso terapêutico , Imidazóis/uso terapêutico , Osteogênese/efeitos dos fármacos , Osteoporose Pós-Menopausa/tratamento farmacológico , Idoso , Conservadores da Densidade Óssea/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Difosfonatos/farmacologia , Feminino , Humanos , Imidazóis/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade , Osteonectina/genética , Osteoporose Pós-Menopausa/genética , Regulação para Cima/efeitos dos fármacos , Ácido Zoledrônico
7.
Oncol Rep ; 37(4): 2209-2214, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28350114

RESUMO

Malignant melanoma is a lethal form of skin cancer and highly metastatic tumor with poor prognosis; BEL ß-trefoil, a lectin, obtained by our group, possesses the ability to act specifically on malignant cells. Therefore, the aim of our study was to investigate the effects of BEL ß-trefoil in melanoma cells in an attempt to evaluate its potential usage as anticancer agent. BEL ß-trefoil was purified by chromatography and A375 and MeWo melanoma cells were treated. Viability and proliferation were evaluated as well as apoptosis, RUNX2 gene expression and migration ability. The treated tumor cells decreased viability as well as proliferative ability. Flow cytometry analysis showed a lessen effect of the treatment on apoptosis. The gene expression analysis showed a reduction of RUNX2 expression in a dose-dependent manner and migration ability was reduced significantly in both treated cell lines. Our findings suggest that BEL ß-trefoil can be considered a useful tool against malignancy due to its effect based on the simultaneous proliferation ability reduction as well as the inhibition of migration capacity on melanoma tumor cells.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação para Baixo , Melanoma/genética , Lectinas de Plantas/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lotus/metabolismo , Melanoma/tratamento farmacológico
8.
Blood ; 126(20): 2320-8, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26330244

RESUMO

Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorder, characterized by severe organ complication. Sickle bone disease (SBD) affects a large part of the SCD patient population, and its pathogenesis has been only partially investigated. Here, we studied bone homeostasis in a humanized mouse model for SCD. Under normoxia, SCD mice display bone loss and bone impairment, with increased osteoclast and reduced osteoblast activity. Hypoxia/reperfusion (H/R) stress, mimicking acute vaso-occlusive crises (VOCs), increased bone turnover, osteoclast activity (RankL), and osteoclast recruitment (Rank) with upregulation of IL-6 as proresorptive cytokine. This was associated with further suppression of osteogenic lineage (Runx2, Sparc). To interfere with the development of SBD, zoledronic acid (Zol), a potent inhibitor of osteoclast activity/osteoclastogenesis and promoter of osteogenic lineage, was used in H/R-exposed mice. Zol markedly inhibited osteoclast activity and recruitment, promoting osteogenic lineage. The recurrent H/R stress further worsened bone structure, increased bone turnover, depressed osteoblastogenesis (Runx2, Sparc), and increased both osteoclast activity (RankL, Cathepsin k) and osteoclast recruitment (Rank) in SCD mice compared with either normoxic or single-H/R-episode SCD mice. Zol used before recurrent VOCs prevented bone impairment and promoted osteogenic lineage. Our findings support the view that SBD is related to osteoblast impairment, and increased osteoclast activity resulted from local hypoxia, oxidative stress, and the release of proresorptive cytokine such as IL-6. Zol might act on both the osteoclast and osteoblast compartments as multimodal therapy to prevent SBD.


Assuntos
Anemia Falciforme/metabolismo , Doenças Ósseas/metabolismo , Osteoclastos/metabolismo , Traumatismo por Reperfusão/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/patologia , Animais , Doenças Ósseas/genética , Doenças Ósseas/patologia , Catepsina K/genética , Catepsina K/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Difosfonatos/farmacologia , Modelos Animais de Doenças , Humanos , Imidazóis/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Transgênicos , Osteoclastos/patologia , Osteonectina/genética , Osteonectina/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Ácido Zoledrônico
9.
World J Stem Cells ; 7(5): 789-92, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26131309

RESUMO

Mesenchymal stem cells (MSCs) are progenitor cells capable of self-renewal that can differentiate in multiple tissues and, under specific and standardized culture conditions, expand in vitro with little phenotypic alterations. In recent years, preclinical and clinical studies have focused on MSC analysis and understanding the potential use of these cells as a therapy in a wide range of pathologies, and many applications have been tested. Clinical trials using MSCs have been performed (e.g., for cardiac events, stroke, multiple sclerosis, blood diseases, auto-immune disorders, ischemia, and articular cartilage and bone pathologies), and for many genetic diseases, these cells are considered an important resource. Considering of the biology of MSCs, these cells may also be useful tools for understanding the physiopathology of different diseases, and they can be used to develop specific biomarkers for a broad range of diseases. In this editorial, we discuss the literature related to the use of MSCs for diagnostic applications and we suggest new technologies to improve their employment.

10.
Blood Res ; 48(4): 242-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24466547

RESUMO

One of the hallmarks of the adaptive immune system is the specificity of B and T cell receptors. Thanks to somatic recombination, a large repertoire of receptors can be generated within an individual that guarantee the recognition of a vast number of antigens. Monoclonal antibodies have limited applicability, given the high degree of diversity among these receptors, in BCR and TCR monitoring. Furthermore, with regard to cancer, better characterization of complex genomes and the ability to monitor tumor-specific cryptic mutations or translocations are needed to develop better tailored therapies. Novel technologies, by enhancing the ability of BCR and TCR monitoring, can help in the search for minimal residual disease during hematological malignancy diagnosis and follow-up, and can aid in improving bone marrow transplantation techniques. Recently, a novel technology known as next generation sequencing has been developed; this allows the recognition of unique sequences and provides depth of coverage, heterogeneity, and accuracy of sequencing. This provides a powerful tool that, along with microarray analysis for gene expression, may become integral in resolving the remaining key problems in hematology. This review describes the state of the art of this novel technology, its application in the immunological and hematological fields, and the possible benefits it will provide for the hematology and immunology community.

11.
BMC Bioinformatics ; 13 Suppl 14: S7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23095502

RESUMO

BACKGROUND: Imputation is a statistical process used to predict genotypes of loci not directly assayed in a sample of individuals. Our goal is to measure the performance of imputation in predicting the genotype of the best known gene polymorphisms involved in drug metabolism using a common SNP array genotyping platform generally exploited in genome wide association studies. METHODS: Thirty-nine (39) individuals were genotyped with both Affymetrix Genome Wide Human SNP 6.0 (AFFY) and Affymetrix DMET Plus (DMET) platforms. AFFY and DMET contain nearly 900000 and 1931 markers respectively. We used a 1000 Genomes Pilot + HapMap 3 reference panel. Imputation was performed using the computer program Impute, version 2. SNPs contained in DMET, but not imputed, were analysed studying markers around their chromosome regions. The efficacy of the imputation was measured evaluating the number of successfully imputed SNPs (SSNPs). RESULTS: The imputation predicted the genotypes of 654 SNPs not present in the AFFY array, but contained in the DMET array. Approximately 1000 SNPs were not annotated in the reference panel and therefore they could not be directly imputed. After testing three different imputed genotype calling threshold (IGCT), we observed that imputation performs at its best for IGCT value equal to 50%, with rate of SSNPs (MAF > 0.05) equal to 85%. CONCLUSIONS: Most of the genes involved in drug metabolism can be imputed with high efficacy using standard genome-wide genotyping platforms and imputing procedures.


Assuntos
Estudo de Associação Genômica Ampla , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Farmacogenética/métodos , Polimorfismo de Nucleotídeo Único , Estatística como Assunto/métodos , Farmacoeconomia , Marcadores Genéticos , Genoma Humano , Projeto HapMap , Humanos , Reprodutibilidade dos Testes , Software
12.
Lab Invest ; 82(3): 265-71, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11896205

RESUMO

Gastrointestinal tumors with DNA mismatch repair (MMR) defects show microsatellite instability (MSI) and harbor frameshift mutations in coding mononucleotide repeats of cancer-related genes (targets). We assessed MSI status in 233 sporadic gastrointestinal tumors. We classified as MSI-H (high-frequency microsatellite instability) 15 (10%) of 150 colorectal cancers and 13 (16%) of 83 gastric cancers. We searched for frameshift mutations in a coding poly(T)(8) tract within the gastrin receptor gene (hGARE), which has a potential role in gastrointestinal carcinogenesis. To this purpose, we screened 43 unstable tumors (including 15 hereditary nonpolyposis colorectal cancer cases previously classified as MSI-H), 98 stable tumors, as well as 3 MMR-deficient and 4 MMR-proficient gastrointestinal cancer cell lines. We found mutations in 8 (19%) of the 43 MSI-H tumors but in none of the 98 stable cancers. hGARE mutation frequency was similar in gastric (23%) and colorectal cancers, including sporadic (13%) and hereditary (20%) cases. All mutated tumors proved to harbor frameshift mutations in other cancer-related genes that are considered as targets in MSI tumorigenesis. The MMR-deficient and gastrin-sensitive LoVo colorectal cancer cells also showed a hGARE heterozygous frameshift mutation, but expressed only the mutated allele. All detected mutations can be predicted to generate a truncated protein carrying amino acid changes. On the basis of genetic findings, we propose hGARE as a new candidate target gene in MSI tumorigenesis. Functional studies are warranted to elucidate the mechanism by which the hGARE mutation might contribute to gastrointestinal carcinogenesis.


Assuntos
Neoplasias Colorretais/genética , Mutação da Fase de Leitura , Repetições de Microssatélites/genética , Receptores da Colecistocinina/genética , Neoplasias Gástricas/genética , Pareamento Incorreto de Bases , Neoplasias Colorretais/classificação , Análise Mutacional de DNA , DNA de Neoplasias/análise , Humanos , RNA Mensageiro/metabolismo , RNA Neoplásico/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/classificação , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA