Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 712-713: 149922, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38626531

RESUMO

We previously reported that solute carrier family 22 member 18 (Slc22a18) regulates lipid accumulation in 3T3-L1 adipocytes. Here, we provide additional evidence derived from experiments with adenoviral vector expression and genetic manipulation of mice. In primary cultured rat hepatocytes, adenoviral overexpression of mouse Slc22a18 increased triglyceride accumulation and triglyceride synthetic activity, which was decreased in an adenoviral knockdown experiment. Adenoviral overexpression of mouse Slc22a18 in vivo caused massive fatty liver in mice, even under normal dietary conditions. Conversely, adenoviral knockdown of mouse Slc22a18 reduced hepatic lipid accumulation induced by a high-glucose and high-sucrose diet. We created Slc22a18 knockout mice, which grew normally and showed no obvious spontaneous phenotypes. However, compared with control littermates, the knockout mice exhibited decreased hepatic triglyceride content under refeeding conditions, significantly reduced epididymal fat mass, and tended to have lower liver weight in conjunction with leptin deficiency. Finally, we created transgenic mice overexpressing rat Slc22a18 in an adipose-specific manner, which had increased body weight and epididymal fat mass primarily because of increased adipocyte cell volume. In these transgenic mice, a positive correlation was observed between adiposity and the expression levels of the rat Slc22a18 transgene. Taken together, these results indicate that Slc22a18 has positive effects on lipid accumulation in vivo.


Assuntos
Proteínas de Transporte de Cátions Orgânicos , Animais , Camundongos , Ratos , Masculino , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Camundongos Knockout , Hepatócitos/metabolismo , Triglicerídeos/metabolismo , Camundongos Transgênicos , Metabolismo dos Lipídeos/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Adiposidade/genética , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Células Cultivadas , Ratos Sprague-Dawley
2.
Gen Comp Endocrinol ; 261: 31-39, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29360464

RESUMO

Melanocortin 4 receptor (MC4R), which is a member of the G protein-coupled receptor (GPCR) family, mediates regulation of energy homeostasis upon the binding of α-melanocyte-stimulating hormone (α-MSH) in the central nervous system (CNS). Melanocortin 2 receptor accessory protein 2 (MRAP2) modulates the function of MC4R. We performed cDNA cloning of cat MC4R and MRAP2 and characterized their amino acid sequences, mRNA expression patterns in cat tissues, protein-protein interactions, and functions. We found high sequence homology (>88%) with other mammalian MC4R and MRAP2 encoding 332 and 206 amino acid residues, respectively. Reverse transcription-polymerase chain reaction analysis revealed that cat MC4R and MRAP2 mRNA were expressed highly in the CNS. In CHO-K1 cells transfected with cat MC4R, stimulation with α-MSH increased intracellular cyclic adenosine monophosphate (cAMP) concentration in a dose-dependent manner. Furthermore, the presence of MRAP2 enhanced the cat MC4R-mediated cAMP production. These results suggested that cat MC4R acts as a neuronal mediator in the CNS and that its function is modulated by MRAP2. In addition, our NanoBiT study showed the dynamics of their interactions in living cells; stimulation with α-MSH slightly affected the interaction between MC4R and MRAP2, and did not affect MC4R homodimerization, suggesting that they interact in the basal state and that structural change of MC4R by activation may affect the interaction between MC4R and MRAP2.


Assuntos
Proteínas Modificadoras da Atividade de Receptores/genética , Receptor Tipo 4 de Melanocortina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Gatos , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , DNA Complementar/genética , Perfilação da Expressão Gênica , Glicosilação , Homeostase , Ligação Proteica , Multimerização Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Modificadoras da Atividade de Receptores/química , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptor Tipo 4 de Melanocortina/química , alfa-MSH/metabolismo
3.
ScientificWorldJournal ; 2016: 6382467, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27597985

RESUMO

Weanling male Wistar rats were fed on a 10% soybean protein isolate (SPI) diet for 3 weeks with or without supplementing 0.3% sulfur-containing amino acids (SAA; methionine or cystine) to examine relationship between glutathione (GSH) levels and activities of NADPH-producing enzymes, glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME), in the liver. Of rats on the 10% SPI diet, GSH levels were lower and the enzyme activities were higher than of those fed on an SAA-supplemented diet. Despite the lower GSH level, γ-glutamylcysteine synthetase (γ-GCS) activity was higher in the 10% SPI group than other groups. Examination of mRNAs of G6PD and ME suggested that the GSH-suppressing effect on enzyme induction occurred prior to and/or at transcriptional levels. Gel electrophoresis of G6PD indicated that low GSH status caused a decrease in reduced form and an increase in oxidized form of the enzyme, suggesting an accelerated turnover rate of the enzyme. In primary cultured hepatocytes, insulin response to induce G6PD activity was augmented in low GSH levels manipulated in the presence of buthionine sulfoximine. These findings indicated that elevation of the G6PD activity in low GSH levels was caused by amplified insulin response for expression of the enzyme and accelerated turnover rate of the enzyme molecule.


Assuntos
Glucosefosfato Desidrogenase/metabolismo , Glutationa/análise , Insulina/metabolismo , Fígado/enzimologia , Animais , Dieta , Malato Desidrogenase/metabolismo , Masculino , Ratos , Ratos Wistar
4.
J Toxicol Sci ; 41(4): 479-87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27432234

RESUMO

Methylmercury (MeHg) is gradually changed to inorganic Hg after demethylation in animal tissues, and a selective quantification of inorganic Hg in the tissues is necessary to detect the reaction. We detected inorganic Hg formation in liver and kidney of mouse as early as 24 hr after MeHg injection. As an example of biological demethylation, the cytochrome P450 (P450)-mediated N-demethylation of drugs has been well documented, and formaldehyde was detected as a reaction product. Here we incubated mouse liver homogenate with added MeHg and observed a dose-dependent production of formaldehyde, as well as inorganic Hg formation. Since the amount of formaldehyde was approx. 500 times higher than that of the inorganic Hg that formed, the formaldehyde production would be stimulated by inorganic Hg formed from MeHg. We observed that inorganic Hg caused formaldehyde production, and it was enhanced by L-methionine and sarcosine. Thus, some biomolecules with S-methyl and N-methyl groups may function as methyl donors in the reaction. Using subcellular fractions of mouse liver, we observed that microsomal P450 did not participate in the demethylation of MeHg, but the greatest activity was located in the mitochondria-rich fraction. The addition of superoxide anion in the reaction mixture significantly enhanced the formaldehyde production, whereas Mn-superoxide dismutase depressed the reaction. Our present findings demonstrated that inorganic Hg formed by MeHg demethylation in mouse liver stimulated the endogenous formaldehyde production, and we observed that MeHg demethylation could be estimated by a formaldehyde analysis. Our results also suggested that superoxide anion is involved in the reaction.


Assuntos
Formaldeído/metabolismo , Fígado/metabolismo , Compostos de Metilmercúrio/metabolismo , Administração Oral , Animais , Biotransformação , Sistema Enzimático do Citocromo P-450/metabolismo , Remoção de Radical Alquila , Feminino , Formaldeído/toxicidade , Rim/metabolismo , Cinética , Metionina/metabolismo , Compostos de Metilmercúrio/administração & dosagem , Compostos de Metilmercúrio/toxicidade , Camundongos Endogâmicos C57BL , Sarcosina/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
5.
Nat Commun ; 5: 3492, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24637670

RESUMO

High-dose ionizing radiation induces severe DNA damage in the epithelial stem cells in small intestinal crypts and causes gastrointestinal syndrome (GIS). Although the tumour suppressor p53 is a primary factor inducing death of crypt cells with DNA damage, its essential role in maintaining genome stability means inhibiting p53 to prevent GIS is not a viable strategy. Here we show that the innate immune receptor Toll-like receptor 3 (TLR3) is critical for the pathogenesis of GIS. Tlr3(-/-) mice show substantial resistance to GIS owing to significantly reduced radiation-induced crypt cell death. Despite showing reduced crypt cell death, p53-dependent crypt cell death is not impaired in Tlr3(-/-) mice. p53-dependent crypt cell death causes leakage of cellular RNA, which induces extensive cell death via TLR3. An inhibitor of TLR3-RNA binding ameliorates GIS by reducing crypt cell death. Thus, we propose blocking TLR3 activation as a novel approach to treat GIS.


Assuntos
Gastroenteropatias/metabolismo , Gastroenteropatias/prevenção & controle , Lesões por Radiação/metabolismo , Lesões por Radiação/prevenção & controle , Receptor 3 Toll-Like/deficiência , Animais , Apoptose , Feminino , Gastroenteropatias/genética , Gastroenteropatias/fisiopatologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Lesões por Radiação/genética , Lesões por Radiação/fisiopatologia , Radiação Ionizante , Receptor 3 Toll-Like/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Res Vet Sci ; 93(2): 770-5, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22172402

RESUMO

Pancreatic and duodenal homeobox 1 (Pdx-1) is a critical insulin transcription factor expressed by pancreatic ß-cells, and is crucial in the early stage of pancreas development. Unfortunately, nothing concerning Pdx-1 in canine has been elucidated yet. In this study, full length canine Pdx-1 cDNA was cloned and it was 1498 bp in length, consisting of a 99 bp 5'-untranslated region (UTR), a 849 bp coding region, and a 550 bp 3'-UTR region. A deduced 282 amino acid sequence of canine PDX-1 displayed high overall sequence identity with human, bovine, and mouse PDX-1. qRT-PCR analysis revealed that a high level of Pdx1 mRNA expression is exists in the duodenum and pancreas of canines. In addition, functional canine insulin promoter-luciferase reporter constructs with various canine insulin promoter region fragments revealed that our Pdx-1 isolated cDNA sequence encodes for a functionally active PDX-1 protein. Significant promoter activity was observed within the -583 bp 5'-upstream region of canine insulin gene with Chinese hamster ovary cells. In addition, Pdx-1 appears to have a synergistic effect with beta cell transactivator 2 (BETA2) and V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), which also have important roles in the activation of the insulin gene promoter. Our results confirm that similar to humans, Pdx1 plays an important role in expression of insulin gene in canines.


Assuntos
DNA Complementar/genética , Proteínas de Homeodomínio/metabolismo , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cães , Regulação da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/genética , Insulina/genética , Insulina/metabolismo , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Transativadores/genética
7.
Radiat Res ; 173(2): 158-64, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20095847

RESUMO

BALB/c mice are sensitive to radiation-induced lymphomagenesis, while STS mice are resistant. Using 219 [(BALB/c x STS)F(1) x BALB/c] (N2C) and 197 [(BALB/c x STS)F(1) x STS] (N2S) animals, we performed a genome-wide search for loci controlling susceptibility to lymphomagenesis induced by radiation. Association of markers with the survival of animals was analyzed by the log rank test. For N2C mice, a significant correlation was detected, with four markers on the proximal to mid portion of chromosome 4: D4Mit302 and D4Mit255, P = 0.0075; D4Mit17, P = 0.034; and D4Mit86, P = 0.048. On the other hand, no significant linkage was detected in N2S mice. We analyzed BALB/c mice congenic for the STS allele in different regions of chromosome 4 and identified a locus with a conspicuous effect on survival located within a 7-Mb region between D4Mit302 and D4Mit144, where BALB/c mice harbor hypomorphic variant alleles of the tumor suppressor gene Cdkn2a, which encodes the cyclin-dependent kinase inhibitor protein p16INK4a. Using pooled F(2) intercrosses between the BALB/c and congenic lines carrying the STS allele near D4Mit17, but not in the range from D4Mit302 to D4Mit144, we assigned the second locus to an 11.4-Mb region in the vicinity of D4Mit17. Although Cdkn2a is a likely candidate for the locus controlling susceptibility to lymphomagenesis on chromosome 4, a novel tumor susceptibility gene different from Cdkn2a exists near the primary locus.


Assuntos
Mapeamento Cromossômico , Genes p16 , Predisposição Genética para Doença , Linfoma/etiologia , Neoplasias Induzidas por Radiação/genética , Animais , Perda de Heterozigosidade , Linfoma/genética , Camundongos , Camundongos Endogâmicos BALB C
8.
J Radiat Res ; 48(2): 143-52, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17327688

RESUMO

p53 is one of the most frequently mutated genes in mammary carcinomas (MCs). To detect tumor suppressor genes cooperating with a hetero-deficient p53 gene in mammary carcinogenesis, we first examined allelotypes in MCs from (BALB/cHeA x MSM/Ms) F(1)- p53(+/-) and (BALB/cHeA x 129/SvEv) F(1)- p53(+/-) female mice, and then surveyed down-regulated genes in the allelic loss regions. Genome-wide screening at 42 loci identified frequent (more than 30%) loss of heterozygosity (LOH) on chromosomes 5, 8, 11, 12, 14 and 18 in the MCs from either of the F(1) mice. The MCs in the p53(+/- )mice indicated highly frequent LOH, especially on chromosomes 8, 11 and 12, distinct from other mouse tumors. More than 60% of the 38 MCs from (BALB/cHeA x MSM/Ms) F(1)- p53 (+/-) mice showed LOH in a region ranging from D8Mit85 (105.0 Mb from centromere) to D8Mit113 (111.8 Mb) on chromosome 8, a region syntenic to human chromosome 16q22.1, on which LOH has been found in breast cancers. RT-PCR analyses revealed that the LOH of chromosome 8 was associated with the reduced and/or complete loss of expression of Cdh1 and Cdh5 genes in 15 (58%) and 8 (31%) of 26 MCs derived from the F(1) mice, respectively. Thus, inactivation of Cdh1 and Cdh5 is likely to cooperate with the loss of p53, suggesting a possible tumor suppressive function of these genes in mammary carcinogenesis.


Assuntos
Alelos , Antígenos CD/genética , Caderinas/genética , Regulação Neoplásica da Expressão Gênica , Genes p53 , Perda de Heterozigosidade , Neoplasias Mamárias Animais/genética , Animais , Mapeamento Cromossômico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Repetições de Microssatélites
9.
Breast Cancer Res ; 7(1): R164-70, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15642165

RESUMO

INTRODUCTION: Ataxia-telangiectasia is an autosomal-recessive disease that affects neuro-immunological functions, associated with increased susceptibility to malignancy, chromosomal instability and hypersensitivity to ionizing radiation. Although ataxia-telangiectasia mutated (ATM) heterozygous deficiency has been proposed to increase susceptibility to breast cancer, some studies have not found excess risk. In experimental animals, increased susceptibility to breast cancer is not observed in the Atm heterozygous deficient mice (Atm+/-) carrying a knockout null allele. In order to determine the effect of Atm heterozygous deficiency on mammary tumourigenesis, we generated a series of Atm+/- mice on the p53+/- background with a certain predisposition to spontaneous development of mammary carcinomas, and we examined the development of the tumours after X-irradiation. METHODS: BALB/cHeA-p53+/- mice were crossed with MSM/Ms-Atm+/- mice, and females of the F1 progeny ([BALB/cHeA x MSM/Ms]F1) with four genotypes were used in the experiments. The mice were exposed to X-rays (5 Gy; 0.5 Gy/min) at age 5 weeks. RESULTS: We tested the effect of haploinsufficiency of the Atm gene on mammary tumourigenesis after X-irradiation in the p53+/- mice of the BALB/cHeA x MSM/Ms background. The singly heterozygous p53+/- mice subjected to X-irradiation developed mammary carcinomas at around 25 weeks of age, and the final incidence of mammary carcinomas at 39 weeks was 31% (19 out of 61). The introduction of the heterozygous Atm knockout alleles into the background of the p53+/- genotype significantly increased the incidence of mammary carcinoma to 58% (32 out of 55) and increased the average number of mammary carcinomas per mouse. However, introduction of Atm alleles did not change the latency of development of mammary carcinoma. CONCLUSION: Our results indicate a strong enhancement in mammary carcinogenesis by Atm heterozygous deficiency in p53+/- mice. Thus, doubly heterozygous mice represent a useful model system with which to analyze the interaction of heterozygous genotypes for p53, Atm and other genes, and their effects on mammary carcinogenesis.


Assuntos
Carcinoma/genética , Carcinoma/fisiopatologia , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Genes p53 , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/fisiopatologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Carcinoma/prevenção & controle , Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Feminino , Predisposição Genética para Doença , Perda de Heterozigosidade , Masculino , Neoplasias Mamárias Animais/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neoplasias Induzidas por Radiação , Proteínas Serina-Treonina Quinases/fisiologia , Fatores de Risco , Proteínas Supressoras de Tumor/fisiologia
10.
J Vet Med Sci ; 66(1): 97-102, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14960823

RESUMO

Mutations of Fas (CD95/Apo-1) gene have been reported in various malignancies and therefore the Fas gene has been considered to be a tumor suppressor gene. To examine an involvement of Fas gene as a tumor suppressor gene in radiation lymphomagenesis, we examined the loss of heterozygosity (LOH) in lymphomas from (MSM/Ms x MRL-MpJ/Fas (lpr)) F(1) and (BALB/cHeA x MRL-MpJ/Fas (lpr)) F(1) hybrid mice. Lymphoma development by X-irradiation was efficiently observed in both F(1) hybrids. Frequent LOH was found on chromosomes 12 and 4 in the tumors from both F(1) mice, but no allelic loss on chromosome 19 containing Fas locus was found, and no wild-type allele of the Fas gene was lost in 51 lymphomas. Therefore, the putative tumor-suppressor gene regions responsible for lymphomagenesis might not considerably differ due to the Fas gene status.


Assuntos
Perda de Heterozigosidade , Linfoma/genética , Receptor fas/genética , Animais , Feminino , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Neoplasias Induzidas por Radiação/genética , Fatores de Tempo
11.
J Radiat Res ; 44(3): 249-54, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14646229

RESUMO

BALB/c mice are susceptible to radiation-induced mammary tumors as well as lymphomas. We investigated the effects of the p53 deficient allele and of X-irradiation on the tumor spectrum in the BALB/c background. Substantially all p53 -/-animals died of thymic lymphomas before 36 weeks of age, while none of the p53 +/+ animals died during that period. At this age, mortalities of p53 +/- females and males were 5% (1/22) and 11% (1/9), respectively, due to non-thymic lymphoma and sarcoma. When exposed to 4 Gy of X-irradiation, 100% (44/44) and 95% (18/19) of p53 +/- mice died with tumors within 36 weeks. Among these, the predominant cause of death was lymphoma in either sex [26/44 (59%) in females; 13/19 (68%) in males]; mammary adenocarcinoma (15/44, 34%) and sarcoma (3/19, 16%) were semi-dominant in females and males, respectively. The mortalities of similarly treated p53 +/+ mice were 16% (5/31) in females and 17% (3/18) in males: virtually all deaths were due to thymic lymphomas in either sex. When exposed to 4 currency 0.7 Gy of X-irradiation at weekly intervals, 23/23 (100%) of the p53 +/-females died of tumors within 36 weeks. In these animals, mammary adenocarcinoma (15/23, 65%), instead of lymphoma (7/23, 30%), was dominant. None of the similarly treated p53 +/+ females developed malignant tumors during the period. Mammary adenocarcinomas generated in p53 +/- females exposed or non-exposed to radiation showed a frequent loss of the p53 wild-type allele. Hence, we provided a useful experimental system to study radiation-induced mammary tumors in mice.


Assuntos
Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Fracionamento da Dose de Radiação , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/metabolismo , Proteína Supressora de Tumor p53/deficiência , Raios X/efeitos adversos , Adenocarcinoma/etiologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Feminino , Dose Letal Mediana , Linfoma/etiologia , Linfoma/metabolismo , Linfoma/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Induzidas por Radiação/patologia , Sarcoma/etiologia , Sarcoma/metabolismo , Sarcoma/patologia , Fatores Sexuais , Taxa de Sobrevida
12.
J Radiat Res ; 43(2): 175-85, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12238332

RESUMO

Regions of allelic loss on chromosomes in many tumors of human and some experimental animals are generally considered to harbor tumor-suppressor genes involved in tumorigenesis. Allelotype analyses have greatly improved our understanding of the molecular mechanism of radiation lymphomagenesis. Previously, we and others found frequent loss of heterozygosity (LOH) on chromosomes 4, 11, 12, 16 and 19 in radiation-induced lymphomas from several F1 hybrid mice. To examine possible contributions of individual tumor-suppressor genes to tumorigenesis in p53 heterozygous deficiency, we investigated the genome-wide distribution and status of LOH in radiation-induced lymphomas from F1 mice with different p53 status. In this study, we found frequent LOH (more than 20%) on chromosomes 4 and 12 and on chromosomes 11, 12, 16 and 19 in radiation-induced lymphomas from (STS/A X MSM/Ms)F1 mice and (STS/A X MSM/Ms)F1-p53KO/+ mice, respectively. Low incidences of LOH (10-20%) were also observed on chromosomes 11 in mice with wild-type p53, and chromosomes 1, 2, 9, 17 and X in p53 heterozygous-deficient mice. The frequency of LOH on chromosomes 9 and 11 increased in the (STS/A X MSM/Ms)F1-p53KO/+ mice. Preferential losses of the STS-derived allele on chromosome 9 and wild-type p53 allele on chromosome 11 were also found in the p53 heterozygous-deficient mice. Thus, the putative tumor-suppressor gene regions responsible for lymphomaganesis might considerably differ due to the p53 status.


Assuntos
Genes Supressores de Tumor , Genes p53 , Linfoma/genética , Neoplasias Induzidas por Radiação/genética , Animais , Heterozigoto , Camundongos , Proteína Supressora de Tumor p53/deficiência
13.
J Radiat Res ; 43(2): 187-94, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12238333

RESUMO

The loss of heterozygosity (LOH) has been reported in numerous neoplasms in both human and animals, and has often been observed in chromosomal regions, which contain tumor-suppressor genes. We previously found frequent LOH on chromosomes 4, 12 and 19 in radiation-induced lymphomas from (BALB/cHeA x STS/A)F1 hybrid mice by allelotype analysis at polymorphic microsatellite loci. In this study, to elucidate the nature of allelic losses, we refined the loss regions on chromosomes 4, 12 and 19 of the tumors from the F1 mice and then analyzed them cytogenetically. The results represent evidence of a wide range of allelic losses owing to mitotic recombination on chromosomes 4 and 19 in the tumors, possibly reflecting functional losses of putative tumor-suppressor genes. It is suggested that the generation of these large homozygous chromosomal segments probably containing the affected genes is one of the genetic alterations responsible for tumorigenesis.


Assuntos
Cromossomos/genética , Homozigoto , Linfoma/genética , Linfoma/patologia , Mitose/genética , Recombinação Genética/fisiologia , Animais , Perda de Heterozigosidade , Camundongos , Camundongos Endogâmicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA