Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Microbiol Spectr ; 12(2): e0259423, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230926

RESUMO

Fungal infections are a growing global health concern due to the limited number of available antifungal therapies as well as the emergence of fungi that are resistant to first-line antimicrobials, particularly azoles and echinocandins. Development of novel, selective antifungal therapies is challenging due to similarities between fungal and mammalian cells. An attractive source of potential antifungal treatments is provided by ecological niches co-inhabited by bacteria, fungi, and multicellular organisms, where complex relationships between multiple organisms have resulted in evolution of a wide variety of selective antimicrobials. Here, we characterized several analogs of one such natural compound, collismycin A. We show that NR-6226C has antifungal activity against several pathogenic Candida species, including C. albicans and C. glabrata, whereas it only has little toxicity against mammalian cells. Mechanistically, NR-6226C selectively chelates iron, which is a limiting factor for pathogenic fungi during infection. As a result, NR-6226C treatment causes severe mitochondrial dysfunction, leading to formation of reactive oxygen species, metabolic reprogramming, and a severe reduction in ATP levels. Using an in vivo model for fungal infections, we show that NR-6226C significantly increases survival of Candida-infected Galleria mellonella larvae. Finally, our data indicate that NR-6226C synergizes strongly with fluconazole in inhibition of C. albicans. Taken together, NR-6226C is a promising antifungal compound that acts by chelating iron and disrupting mitochondrial functions.IMPORTANCEDrug-resistant fungal infections are an emerging global threat, and pan-resistance to current antifungal therapies is an increasing problem. Clearly, there is a need for new antifungal drugs. In this study, we characterized a novel antifungal agent, the collismycin analog NR-6226C. NR-6226C has a favorable toxicity profile for human cells, which is essential for further clinical development. We unraveled the mechanism of action of NR-6226C and found that it disrupts iron homeostasis and thereby depletes fungal cells of energy. Importantly, NR-6226C strongly potentiates the antifungal activity of fluconazole, thereby providing inroads for combination therapy that may reduce or prevent azole resistance. Thus, NR-6226C is a promising compound for further development into antifungal treatment.


Assuntos
Anti-Infecciosos , Micoses , Animais , Humanos , Antifúngicos/farmacologia , Fluconazol/farmacologia , Ferro , Candida , Micoses/microbiologia , Candida albicans , Anti-Infecciosos/farmacologia , Azóis/farmacologia , Candida glabrata , Quelantes de Ferro/farmacologia , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana , Mamíferos
2.
J Hematol Oncol ; 16(1): 118, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087293

RESUMO

Antibody-drug conjugates (ADCs) have emerged as a novel therapeutic strategy that has successfully reached patient treatment in different clinical scenarios. ADCs are formed by an antibody against a specific tumor-associated antigen (TAA), a cytotoxic payload, and a chemical linker that binds both. To this regard, most efforts have been focused on target identification, antibody design and linker optimization, but other relevant aspects for clinical development have not received the necessary attention. In this article using data from approved ADCs, we evaluated all characteristics of these agents, including payload physicochemical properties, in vitro potency, drug antibody ratio (DAR), exposure-response relationships, and clinical development strategies. We suggest that compounds with best options for clinical development include those with optimal payload physicochemical properties and cleavable linkers that would lead to a bystander effect. These modalities can facilitate the development of ADCs in indications with low expression of the TAA. Early clinical development strategies including changes in the schedule of administration with more frequent doses are also discussed in the context of an efficient strategy. In conclusion, we highlight relevant aspects that are needed for the optimal development of ADCs in cancer, proposing options for improvement.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Imunoconjugados/uso terapêutico , Imunoconjugados/química , Anticorpos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias/tratamento farmacológico
3.
Biomed Pharmacother ; 162: 114627, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37018985

RESUMO

Osteosarcomas are frequently associated to a poor prognosis and a modest response to current treatments. EC-8042 is a well-tolerated mithramycin analog that has demonstrated an efficient ability to eliminate tumor cells, including cancer stem cell subpopulations (CSC), in sarcomas. In transcriptomic and protein expression analyses, we identified NOTCH1 signaling as one of the main pro-stemness pathways repressed by EC-8042 in osteosarcomas. Overexpression of NOTCH-1 resulted in a reduced anti-tumor effect of EC-8042 in CSC-enriched 3D tumorspheres cultures. On the other hand, the depletion of the NOTCH-1 downstream target HES-1 was able to enhance the action of EC-8042 on CSCs. Moreover, HES1 depleted cells failed to recover after treatment withdrawal and showed reduced tumor growth potential in vivo. In contrast, mice xenografted with NOTCH1-overexpressing cells responded worse than parental cells to EC-8042. Finally, we found that active NOTCH1 levels in sarcoma patients was associated to advanced disease and lower survival. Overall, these data highlight the relevant role that NOTCH1 signaling plays in mediating stemness in osteosarcoma. Moreover, we demonstrate that EC-8042 is powerful inhibitor of NOTCH signaling and that the anti-CSC activity of this mithramycin analog highly rely on its ability to repress this pathway.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Camundongos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Osteossarcoma/patologia , Plicamicina/farmacologia , Receptor Notch1/metabolismo , Receptores Notch/metabolismo
4.
J Exp Clin Cancer Res ; 42(1): 99, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37095531

RESUMO

BACKGROUND: MiT-Renal Cell Carcinoma (RCC) is characterized by genomic translocations involving microphthalmia-associated transcription factor (MiT) family members TFE3, TFEB, or MITF. MiT-RCC represents a specific subtype of sporadic RCC that is predominantly seen in young patients and can present with heterogeneous histological features making diagnosis challenging. Moreover, the disease biology of this aggressive cancer is poorly understood and there is no accepted standard of care therapy for patients with advanced disease. Tumor-derived cell lines have been established from human TFE3-RCC providing useful models for preclinical studies. METHODS: TFE3-RCC tumor derived cell lines and their tissues of origin were characterized by IHC and gene expression analyses. An unbiased high-throughput drug screen was performed to identify novel therapeutic agents for treatment of MiT-RCC. Potential therapeutic candidates were validated in in vitro and in vivo preclinical studies. Mechanistic assays were conducted to confirm the on-target effects of drugs. RESULTS: The results of a high-throughput small molecule drug screen utilizing three TFE3-RCC tumor-derived cell lines identified five classes of agents with potential pharmacological efficacy, including inhibitors of phosphoinositide-3-kinase (PI3K) and mechanistic target of rapamycin (mTOR), and several additional agents, including the transcription inhibitor Mithramycin A. Upregulation of the cell surface marker GPNMB, a specific MiT transcriptional target, was confirmed in TFE3-RCC and evaluated as a therapeutic target using the GPNMB-targeted antibody-drug conjugate CDX-011. In vitro and in vivo preclinical studies demonstrated efficacy of the PI3K/mTOR inhibitor NVP-BGT226, Mithramycin A, and CDX-011 as potential therapeutic options for treating advanced MiT-RCC as single agents or in combination. CONCLUSIONS: The results of the high-throughput drug screen and validation studies in TFE3-RCC tumor-derived cell lines have provided in vitro and in vivo preclinical data supporting the efficacy of the PI3K/mTOR inhibitor NVP-BGT226, the transcription inhibitor Mithramycin A, and GPNMB-targeted antibody-drug conjugate CDX-011 as potential therapeutic options for treating advanced MiT-RCC. The findings presented here should provide the basis for designing future clinical trials for patients with MiT-driven RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Inibidores de MTOR , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Translocação Genética , Fosfatidilinositol 3-Quinase , Glicoproteínas de Membrana/genética
5.
Cancers (Basel) ; 14(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35326743

RESUMO

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Patients with AML harboring a constitutively active internal tandem duplication mutation (ITDMUT) in the FMS-like kinase tyrosine kinase (FLT3) receptor generally have a poor prognosis. Several tyrosine kinase/FLT3 inhibitors have been developed and tested clinically, but very few (midostaurin and gilteritinib) have thus far been FDA/EMA-approved for patients with newly diagnosed or relapse/refractory FLT3-ITDMUT AML. Disappointingly, clinical responses are commonly partial or not durable, highlighting the need for new molecules targeting FLT3-ITDMUT AML. Here, we tested EC-70124, a hybrid indolocarbazole analog from the same chemical space as midostaurin with a potent and selective inhibitory effect on FLT3. In vitro, EC-70124 exerted a robust and specific antileukemia activity against FLT3-ITDMUT AML primary cells and cell lines with respect to cytotoxicity, CFU capacity, apoptosis and cell cycle while sparing healthy hematopoietic (stem/progenitor) cells. We also analyzed its efficacy in vivo as monotherapy using two different xenograft models: an aggressive and systemic model based on MOLM-13 cells and a patient-derived xenograft model. Orally disposable EC-70124 exerted a potent inhibitory effect on the growth of FLT3-ITDMUT AML cells, delaying disease progression and debulking the leukemia. Collectively, our findings show that EC-70124 is a promising and safe agent for the treatment of AML with FLT3-ITDMUT.

6.
J Nanobiotechnology ; 19(1): 267, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488783

RESUMO

BACKGROUND: Sarcomas comprise a group of aggressive malignancies with very little treatment options beyond standard chemotherapy. Reposition of approved drugs represents an attractive approach to identify effective therapeutic compounds. One example is mithramycin (MTM), a natural antibiotic which has demonstrated a strong antitumour activity in several tumour types, including sarcomas. However, its widespread use in the clinic was limited by its poor toxicity profile. RESULTS: In order to improve the therapeutic index of MTM, we have loaded MTM into newly developed nanocarrier formulations. First, polylactide (PLA) polymeric nanoparticles (NPs) were generated by nanoprecipitation. Also, liposomes (LIP) were prepared by ethanol injection and evaporation solvent method. Finally, MTM-loaded hydrogels (HG) were obtained by passive loading using a urea derivative non-peptidic hydrogelator. MTM-loaded NPs and LIP display optimal hydrodynamic radii between 80 and 105 nm with a very low polydispersity index (PdI) and encapsulation efficiencies (EE) of 92 and 30%, respectively. All formulations show a high stability and different release rates ranging from a fast release in HG (100% after 30 min) to more sustained release from NPs (100% after 24 h) and LIP (40% after 48 h). In vitro assays confirmed that all assayed MTM formulations retain the cytotoxic, anti-invasive and anti-stemness potential of free MTM in models of myxoid liposarcoma, undifferentiated pleomorphic sarcoma and chondrosarcoma. In addition, whole genome transcriptomic analysis evidenced the ability of MTM, both free and encapsulated, to act as a multi-repressor of several tumour-promoting pathways at once. Importantly, the treatment of mice bearing sarcoma xenografts showed that encapsulated MTM exhibited enhanced therapeutic effects and was better tolerated than free MTM. CONCLUSIONS: Overall, these novel formulations may represent an efficient and safer MTM-delivering alternative for sarcoma treatment.


Assuntos
Plicamicina/análogos & derivados , Plicamicina/farmacologia , Plicamicina/uso terapêutico , Sarcoma/patologia , Animais , Antibacterianos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Condrossarcoma/tratamento farmacológico , Composição de Medicamentos , Feminino , Humanos , Hidrogéis/química , Hidrogéis/uso terapêutico , Lipossomos , Camundongos , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Poliésteres/química , Poliésteres/uso terapêutico , Sarcoma/tratamento farmacológico
7.
Bioorg Chem ; 112: 104859, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33836453

RESUMO

A novel series of enantiopure naphthalimide-cycloalkanediamine conjugates were designed, synthetized and evaluated for in vitro cytotoxicity against human colon adenocarcinoma (LoVo), human lung adenocarcinoma (A549), human cervical carcinoma (Hela) and human promyelocytic leukemia cell lines (HL-60). The cytotoxicity of the compounds was highly dependent on size and relative stereochemistry of the cycloalkyl ring as well as length of the spacer. By contrast, any kind of enantioselection was observed for each pair of enantiomers. Flow cytometric analysis indicated that compounds 22 and 23 could effectively induce G2/M arrest in the four previous cell lines despite a mild apoptotic effect.


Assuntos
Antineoplásicos/farmacologia , Cicloparafinas/farmacologia , Diaminas/farmacologia , Desenho de Fármacos , Naftalimidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cicloparafinas/química , Diaminas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Naftalimidas/química , Relação Estrutura-Atividade
8.
J Clin Med ; 10(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806182

RESUMO

Sarcomas are aggressive tumors which often show a poor response to current treatments. As a promising therapeutic alternative, we focused on mithramycin (MTM), a natural antibiotic with a promising anti-tumor activity but also a relevant systemic toxicity. Therefore, the encapsulation of MTM in nano-delivery systems may represent a way to increase its therapeutic window. Here, we designed novel transfersomes and PLGA polymeric micelles by combining different membrane components (phosphatidylcholine, Span 60, Tween 20 and cholesterol) to optimize the nanoparticle size, polydispersity index (PDI) and encapsulation efficiency (EE). Using both thin film hydration and the ethanol injection methods we obtained MTM-loaded transferosomes displaying an optimal hydrodynamic diameter of 100-130 nm and EE values higher than 50%. Additionally, we used the emulsion/solvent evaporation method to synthesize polymeric micelles with a mean size of 228 nm and a narrow PDI, capable of encapsulating MTM with EE values up to 87%. These MTM nano-delivery systems mimicked the potent anti-tumor activity of free MTM, both in adherent and cancer stem cell-enriched tumorsphere cultures of myxoid liposarcoma and chondrosarcoma models. Similarly to free MTM, nanocarrier-delivered MTM efficiently inhibits the signaling mediated by the pro-oncogenic factor SP1. In summary, we provide new formulations for the efficient encapsulation of MTM which may constitute a safer delivering alternative to be explored in future clinical uses.

9.
Mol Ther Oncolytics ; 18: 83-99, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32637583

RESUMO

Malignant melanoma is the most deadly skin cancer, associated with rising incidence and mortality rates. Most of the patients with melanoma, treated with current targeted therapies, develop a drug resistance, causing tumor relapse. The attainment of a better understanding of novel cancer-promoting molecular mechanisms driving melanoma progression is essential for the development of more effective targeted therapeutic approaches. Recent studies, including the research previously conducted in our laboratory, reported that the histone methyltransferase SETDB1 contributes to melanoma pathogenesis. In this follow-up study, we further elucidated the role of SETDB1 in melanoma, showing that SETDB1 modulated relevant transcriptomic effects in melanoma, in particular, as activator of cancer-related secreted (CRS) factors and as repressor of melanocyte-lineage differentiation (MLD) and metabolic enzymes. Next, we investigated the effects of SETDB1 inhibition via compounds belonging to the mithramycin family, mithramycin A and mithramycin analog (mithralog) EC-8042: melanoma cells showed strong sensitivity to these drugs, which effectively suppressed the expression of SETDB1 and induced changes at the transcriptomic, morphological, and functional level. Moreover, SETDB1 inhibitors enhanced the efficacy of mitogen-activated protein kinase (MAPK) inhibitor-based therapies against melanoma. Taken together, this work highlights the key regulatory role of SETDB1 in melanoma and supports the development of SETDB1-targeting therapeutic strategies for the treatment of melanoma patients.

10.
Front Immunol ; 10: 2455, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681329

RESUMO

B-cell receptor (BCR)-dependent signaling is central for leukemia B-cell homeostasis, as underscored by the promising clinical results obtained in patients with chronic lymphocytic leukemia (CLL) treated with novel agents targeting components of this pathway. Herein, we demonstrate that the mithralog EC-7072 displays high ex vivo cytotoxic activity against leukemia cells from CLL patients independently from high-risk prognostic markers and IGHV mutational status. EC-7072 was significantly less toxic against T cells and NK cells and did not alter the production of the immune effector molecules IFN-γ and perforin. EC-7072 directly triggered caspase-3-dependent CLL cell apoptosis, which was not abrogated by microenvironment-derived factors that sustain leukemia cell survival. RNA-sequencing analyses revealed a dramatic EC-7072-driven reprograming of the transcriptome of CLL cells, including a wide downregulation of multiple components and targets of the BCR signaling pathway. Accordingly, we found decreased levels of phosphorylated signaling nodes downstream of the BCR. Crosslinking-mediated BCR activation antagonized CLL cell death triggered by EC-7072, increased the phosphorylation levels of the abovementioned signaling nodes and upregulated BCL2 expression, suggesting that the mithralog disrupts CLL cell viability by targeting the BCR signaling axis at multiple levels. EC-7072 exerted similar or higher antileukemic activity than that of several available CLL therapies and displayed additive or synergistic interaction with these drugs in killing CLL cells. Overall, our findings provide rationale for future investigation to test whether EC-7072 may be a potential therapeutic option for patients with CLL and other B-cell malignancies.


Assuntos
Apoptose/efeitos dos fármacos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Plicamicina/análogos & derivados , Receptores de Antígenos de Linfócitos B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Antibióticos Antineoplásicos/farmacologia , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Perfilação da Expressão Gênica/métodos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Fosforilação/efeitos dos fármacos , Plicamicina/farmacologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos
11.
J Clin Med ; 8(8)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382448

RESUMO

The frequent dysregulation of SRC family kinases (SFK) in multiple cancers prompted various inhibitors to be actively tested in preclinical and clinical trials. Disappointingly, dasatinib and saracatinib failed to demonstrate monotherapeutic efficacy in patients with head and neck squamous cell carcinomas (HNSCC). Deeper functional and mechanistic knowledge of the actions of these drugs is therefore needed to improve clinical outcome and to develop more efficient combinational strategies. Even though the SFK inhibitors dasatinib and saracatinib robustly blocked cell migration and invasion in HNSCC cell lines, this study unveils undesirable stem cell-promoting functions that could explain the lack of clinical efficacy in HNSCC patients. These deleterious effects were targeted by the mithramycin analog EC-8042 that efficiently eliminated cancer stem cells (CSC)-enriched tumorsphere cultures as well as tumor bulk cells and demonstrated potent antitumor activity in vivo. Furthermore, combination treatment of dasatinib with EC-8042 provided favorable complementary anti-proliferative, anti-invasive, and anti-CSC functions without any noticeable adverse interactions of both agents. These findings strongly support combinational strategies with EC-8042 for clinical testing in HNSCC patients. These data may have implications on ongoing dasatinib-based trials.

12.
Eur Urol Oncol ; 2(4): 415-424, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31277777

RESUMO

BACKGROUND: The TMPRSS2-ERG gene fusion is the most frequent genetic rearrangement in prostate cancers and results in broad transcriptional reprogramming and major phenotypic changes. Interaction and cooperation of ERG and SP1 may be instrumental in sustaining the tumorigenic and metastatic phenotype and could represent a potential vulnerability in ERG fusion-positive tumors. OBJECTIVE: To test the activity of EC-8042, a compound able to block SP1, in cellular and mouse models of ERG-positive prostate cancer. DESIGN, SETTING, AND PARTICIPANTS: We evaluated the activity of EC-8042 in cell cultures and ERG/PTEN transgenic/knockout mice that provide reliable models for testing novel therapeutics in this specific disease context. Using a new protocol to generate tumor spheroids from ERG/PTEN mice, we also examined the effects of EC-8042 on tumor-propagating stem-like cancer cells with high self-renewal and tumorigenic capabilities. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The efficacy of EC-8042 was determined by measuring the proliferative capacity and target gene expression in cell cultures, invasive and metastatic capabilities in chick chorioallantoic membrane assays, and tumor development in mice. Significance was determined using statistical test. RESULTS AND LIMITATIONS: EC-8042 blocked transcription of ERG-regulated genes and reverted the invasive and metastatic phenotype of VCaP cells. EC-8042 blocked the expansion of stem-like tumor cells in tumor spheroids from VCaP cells and mouse-derived tumors. In ERG/PTEN mice, systemic treatment with EC-8042 inhibited ERG-regulated gene transcription, tumor progression, and tumor-propagating stem-like tumor cells. CONCLUSIONS: Our data support clinical testing of EC-8042 for the treatment of ERG-positive prostate cancer in precision medicine approaches. PATIENT SUMMARY: In this study, EC-8042, a novel compound with a favorable pharmacological and toxicological profile, exhibited relevant activity in cell cultures and in vivo in a genetically engineered mouse model that closely recapitulates the features of clinically aggressive ERG-positive prostate cancer. Our data indicate that further evaluation of EC-8042 in clinical trials is warranted.


Assuntos
Plicamicina/análogos & derivados , Neoplasias da Próstata/genética , Fator de Transcrição Sp1/antagonistas & inibidores , Regulador Transcricional ERG/genética , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Transgênicos , Células-Tronco Neoplásicas , PTEN Fosfo-Hidrolase/genética , Plicamicina/farmacologia , Plicamicina/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico
13.
Int J Cancer ; 145(1): 254-266, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30575954

RESUMO

Cytotoxic drugs like doxorubicin remain as the most utilized agents in sarcoma treatment. However, advanced sarcomas are often resistant, thus stressing the need for new therapies aimed to overcome this resistance. Multikinase inhibitors provide an efficient way to target several pro-tumorigenic pathways using a single agent and may constitute a valuable strategy in the treatment of sarcomas, which frequently show an aberrant activation of pro-tumoral kinases. Therefore, we studied the antitumor activity of EC-70124, an indolocarbazole analog that have demonstrated a robust ability to inhibit a wide range of pro-survival kinases. Evaluation of the phospho-kinase profile in cell-of-origin sarcoma models and/or sarcoma primary cell lines evidenced that PI3K/AKT/mTOR, JAK/STAT or SRC were among the most highly activated pathways. In striking contrast with the structurally related drug midostaurin, EC-70124 efficiently prevented the phosphorylation of these targets and robustly inhibited proliferation through a mechanism associated to the induction of DNA damage, cell cycle arrest and apoptosis. In addition, EC-70124 was able to partially reduce tumor growth in vivo. Importantly, this compound inhibited the expression and activity of ABC efflux pumps involved in drug resistance. In line with this ability, we found that the combined treatment of EC-70124 with doxorubicin resulted in a synergistic cytotoxic effect in vitro and an increased antitumor activity of this cytotoxic drug in vivo. Altogether, these results uncover the capability of the novel multikinase inhibitor EC-70124 to counteract drug resistance in sarcoma and highlight its therapeutic potential when combined with current treatments.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carbazóis/farmacologia , Doxorrubicina/farmacologia , Sarcoma/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Doxorrubicina/administração & dosagem , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Sarcoma/enzimologia , Transdução de Sinais/efeitos dos fármacos , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancers (Basel) ; 10(9)2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30227608

RESUMO

This study investigates for the first time the crosstalk between stromal fibroblasts and cancer stem cell (CSC) biology in head and neck squamous cell carcinomas (HNSCC), with the ultimate goal of identifying effective therapeutic targets. The effects of conditioned media from cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs) on the CSC phenotype were assessed by combining functional and expression analyses in HNSCC-derived cell lines. Further characterization of CAFs and NFs secretomes by mass spectrometry was followed by pharmacologic target inhibition. We demonstrate that factors secreted by CAFs but not NFs, in the absence of serum/supplements, robustly increased anchorage-independent growth, tumorsphere formation, and CSC-marker expression. Modulators of epidermal growth factor receptor (EGFR), insulin-like growth factor receptor (IGFR), and platelet-derived growth factor receptor (PDGFR) activity were identified as paracrine cytokines/factors differentially secreted between CAFs and NFs, in a mass spectrometry analysis. Furthermore, pharmacologic inhibition of EGFR, IGFR, and PDGFR significantly reduced CAF-induced tumorsphere formation and anchorage-independent growth suggesting a role of these receptor tyrosine kinases in sustaining the CSC phenotype. These findings provide novel insights into tumor stroma⁻CSC communication, and potential therapeutic targets to effectively block the CAF-enhanced CSC niche signaling circuit.

15.
Mol Cancer Ther ; 17(3): 614-624, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29339551

RESUMO

Internal tandem duplication (ITD) or tyrosine kinase domain mutations of FLT3 is the most frequent genetic alteration in acute myelogenous leukemia (AML) and are associated with poor disease outcome. Despite considerable efforts to develop single-target FLT3 drugs, so far, the most promising clinical response has been achieved using the multikinase inhibitor midostaurin. Here, we explore the activity of the indolocarbazole EC-70124, from the same chemical space as midostaurin, in preclinical models of AML, focusing on those bearing FLT3-ITD mutations. EC-70124 potently inhibits wild-type and mutant FLT3, and also other important kinases such as PIM kinases. EC-70124 inhibits proliferation of AML cell lines, inducing cell-cycle arrest and apoptosis. EC-70124 is orally bioavailable and displays higher metabolic stability and lower human protein plasma binding compared with midostaurin. Both in vitro and in vivo pharmacodynamic analyses demonstrate inhibition of FLT3-STAT5, Akt-mTOR-S6, and PIM-BAD pathways. Oral administration of EC-70124 in FLT3-ITD xenograft models demonstrates high efficacy, reaching complete tumor regression. Ex vivo, EC-70124 impaired cell viability in leukemic blasts, especially from FLT3-ITD patients. Our results demonstrate the ability of EC-70124 to reduce proliferation and induce cell death in AML cell lines, patient-derived leukemic blast and xenograft animal models, reaching best results in FLT3 mutants that carry other molecular pathways' alterations. Thus, its unique inhibition profile warrants EC-70124 as a promising agent for AML treatment based on its ability to interfere the complex oncogenic events activated in AML at several levels. Mol Cancer Ther; 17(3); 614-24. ©2018 AACR.


Assuntos
Carbazóis/farmacologia , Indóis/farmacologia , Leucemia Mieloide/tratamento farmacológico , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Doença Aguda , Animais , Disponibilidade Biológica , Células CACO-2 , Carbazóis/farmacocinética , Carbazóis/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Indóis/farmacocinética , Indóis/uso terapêutico , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Camundongos SCID , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Células THP-1 , Tirosina Quinase 3 Semelhante a fms/metabolismo
16.
Appl Microbiol Biotechnol ; 102(2): 857-869, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29196786

RESUMO

Mithramycin A is an antitumor compound used for treatment of several types of cancer including chronic and acute myeloid leukemia, testicular carcinoma, hypercalcemia and Paget's disease. Selective modifications of this molecule by combinatorial biosynthesis and biocatalysis opened the possibility to produce mithramycin analogues with improved properties that are currently under preclinical development. The mithramycin A biosynthetic gene cluster from Streptomyces argillaceus ATCC12956 was cloned by transformation assisted recombination in Saccharomyces cerevisiae and heterologous expression in Streptomyces lividans TK24 was evaluated. Mithramycin A was efficiently produced by S. lividans TK24 under standard fermentation conditions. To improve the yield of heterologously produced mithramycin A, a collection of derivative strains of S. lividans TK24 were constructed by sequential deletion of known potentially interfering secondary metabolite gene clusters using a protocol based on the positive selection of double crossover events with blue pigment indigoidine-producing gene. Mithramycin A production was evaluated in these S. lividans strains and substantially improved mithramycin A production was observed depending on the deleted gene clusters. A collection of S. lividans strains suitable for heterologous expression of actinomycetes secondary metabolites were generated and efficient production of mithramycin A with yields close to 3 g/L, under the tested fermentation conditions was achieved using these optimized collection of strains.


Assuntos
Plicamicina/análogos & derivados , Policetídeos/metabolismo , Streptomyces lividans/metabolismo , Streptomyces/enzimologia , Biocatálise , Vias Biossintéticas , Clonagem Molecular , Fermentação , Família Multigênica , Plicamicina/biossíntese , Saccharomyces cerevisiae , Metabolismo Secundário , Streptomyces/genética , Streptomyces lividans/genética
18.
Sci Rep ; 6: 27878, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27292183

RESUMO

Tumors evolve from initial tumorigenic events into increasingly aggressive behaviors in a process usually driven by subpopulations of cancer stem cells (CSCs). Mesenchymal stromal/stem cells (MSCs) may act as the cell-of-origin for sarcomas, and CSCs that present MSC features have been identified in sarcomas due to their ability to grow as self-renewed floating spheres (tumorspheres). Accordingly, we previously developed sarcoma models using human MSCs transformed with relevant oncogenic events. To study the evolution/emergence of CSC subpopulations during tumor progression, we compared the tumorigenic properties of bulk adherent cultures and tumorsphere-forming subpopulations both in the sarcoma cell-of-origin models (transformed MSCs) and in their corresponding tumor xenograft-derived cells. Tumor formation assays showed that the tumorsphere cultures from xenograft-derived cells, but not from the cell-of-origin models, were enriched in CSCs, providing evidence of the emergence of bona fide CSCs subpopulations during tumor progression. Relevant CSC-related factors, such as ALDH1 and SOX2, were increasingly upregulated in CSCs during tumor progression, and importantly, the increased levels and activity of ALDH1 in these subpopulations were associated with enhanced tumorigenicity. In addition to being a CSC marker, our findings indicate that ALDH1 could also be useful for tracking the malignant potential of CSC subpopulations during sarcoma evolution.


Assuntos
Isoenzimas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Retinal Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Linhagem Celular Tumoral , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/transplante , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Retinal Desidrogenase/antagonistas & inibidores , Retinal Desidrogenase/genética , Fatores de Transcrição SOXB1/metabolismo , Sarcoma/metabolismo , Sarcoma/patologia , Imagem com Lapso de Tempo , Transplante Heterólogo
19.
Oncotarget ; 7(21): 30935-50, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27105533

RESUMO

Tumor initiating cells (TICs), responsible for tumor initiation, and cancer stem cells (CSCs), responsible for tumor expansion and propagation, are often resistant to chemotherapeutic agents. To find therapeutic targets against sarcoma initiating and propagating cells we used models of myxoid liposarcoma (MLS) and undifferentiated pleomorphic sarcoma (UPS) developed from human mesenchymal stromal/stem cells (hMSCs), which constitute the most likely cell-of-origin for sarcoma. We found that SP1-mediated transcription was among the most significantly altered signaling. To inhibit SP1 activity, we used EC-8042, a mithramycin (MTM) analog (mithralog) with enhanced anti-tumor activity and highly improved safety. EC-8042 inhibited the growth of TIC cultures, induced cell cycle arrest and apoptosis and upregulated the adipogenic factor CEBPα. SP1 knockdown was able to mimic the anti-proliferative effects induced by EC-8042. Importantly, EC-8042 was not recognized as a substrate by several ABC efflux pumps involved in drug resistance, and, opposite to the chemotherapeutic drug doxorubicin, repressed the expression of many genes responsible for the TIC/CSC phenotype, including SOX2, C-MYC, NOTCH1 and NFκB1. Accordingly, EC-8042, but not doxorubicin, efficiently reduced the survival of CSC-enriched tumorsphere sarcoma cultures. In vivo, EC-8042 induced a profound inhibition of tumor growth associated to a strong reduction of the mitotic index and the induction of adipogenic differentiation and senescence. Finally, EC-8042 reduced the ability of tumor cells to reinitiate tumor growth. These data suggest that EC-8042 could constitute an effective treatment against both TIC and CSC subpopulations in sarcoma.


Assuntos
Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Plicamicina/análogos & derivados , Sarcoma Experimental/tratamento farmacológico , Fator de Transcrição Sp1/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacocinética , Resistencia a Medicamentos Antineoplásicos , Feminino , Imunofluorescência , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Subunidade p50 de NF-kappa B/metabolismo , Plicamicina/farmacocinética , Plicamicina/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor Notch1/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Sarcoma Experimental/genética , Sarcoma Experimental/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Clin Cancer Res ; 22(16): 4105-18, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26979396

RESUMO

PURPOSE: The goal of this study was to identify second-generation mithramycin analogues that better target the EWS-FLI1 transcription factor for Ewing sarcoma. We previously established mithramycin as an EWS-FLI1 inhibitor, but the compound's toxicity prevented its use at effective concentrations in patients. EXPERIMENTAL DESIGN: We screened a panel of mithralogs to establish their ability to inhibit EWS-FLI1 in Ewing sarcoma. We compared the IC50 with the MTD established in mice to determine the relationship between efficacy and toxicity. We confirmed the suppression of EWS-FLI1 at the promoter, mRNA, gene signature, and protein levels. We established an improved therapeutic window by using time-lapse microscopy to model the effects on cellular proliferation in Ewing sarcoma cells relative to HepG2 control cells. Finally, we established an improved therapeutic window using a xenograft model of Ewing sarcoma. RESULTS: EC-8105 was found to be the most potent analogue and was able to suppress EWS-FLI1 activity at concentrations nontoxic to other cell types. EC-8042 was substantially less toxic than mithramycin in multiple species but maintained suppression of EWS-FLI1 at similar concentrations. Both compounds markedly suppressed Ewing sarcoma xenograft growth and inhibited EWS-FLI1 in vivo CONCLUSIONS: These results provide a basis for the continued development of EC-8042 and EC-8105 as EWS-FLI1 inhibitors for the clinic. Clin Cancer Res; 22(16); 4105-18. ©2016 AACR.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/metabolismo , Plicamicina/farmacologia , Proteína Proto-Oncogênica c-fli-1/antagonistas & inibidores , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/antagonistas & inibidores , Proteína EWS de Ligação a RNA/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Terapia de Alvo Molecular , Regiões Promotoras Genéticas , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/mortalidade , Fatores de Transcrição , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA