Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Top Membr ; 83: 205-283, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31196606

RESUMO

Two types of anion channels are directly activated by osmotic swelling and are involved in the regulatory volume decrease (RVD) in most types of mammalian cells, and they include the volume-sensitive outwardly rectifying anion channel (VSOR), also called the volume-regulated anion channel (VRAC), and the large-conductance maxi-anion channel (Maxi-Cl). In cardiomyocytes, a splice variant of cystic fibrosis transmembrane conductance regulator anion channel (cardiac CFTR) participates in the RVD mechanism under ß-adrenergic stimulation. VSOR and Maxi-Cl are also involved in facilitation of the RVD process by releasing extracellular autocrine/paracrine signals, glutamate and ATP. Apoptotic cell death starts with cell shrinkage, called the apoptotic volume decrease (AVD), which is also caused by activation of VSOR. Since VSOR is implicated not only in the AVD induction but also in the uptake of an anti-cancer drug, cisplatin, downregulation of VSOR activity is causatively involved in acquisition of cisplatin resistance in cancer cells. Necrotic cell death exhibits persistent cell swelling, called the necrotic volume increase (NVI), which is coupled to RVD dysfunction due to impaired VSOR function. Acidotoxic and lactacidosis-induced necrotic cell death is induced both by glutamate release mediated by astroglial VSOR and Maxi-Cl and by exaggerated Cl- influx mediated by neuronal VSOR under prolonged depolarization caused by activation of ionotropic glutamate receptor (iGluR) cation channels. Both VSOR and Maxi-Cl are elaborately involved, in a manner as double-edged swords, in ischemia- and ischemia-reperfusion-induced apoptotic or necrotic cell death in cerebral and myocardial cells by mediating not only Cl- transport but also release of glutamate and/or ATP. Cardiac CFTR exerts a protective action against ischemia(-reperfusion)-induced cardiac injury, called myocardial infarction (MI), which is largely necrotic. Cardiac Maxi-Cl activity may participate in protection against ischemia(-reperfusion) injury by mediating ATP release.


Assuntos
Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Resistência a Medicamentos , Canais Iônicos/metabolismo , Isquemia/metabolismo , Infarto do Miocárdio/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Humanos , Isquemia/patologia , Infarto do Miocárdio/patologia , Necrose/metabolismo , Acidente Vascular Cerebral/patologia
2.
Life Sci ; 93(1): 17-23, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23727356

RESUMO

AIMS: Recombinant systems have been used for evaluating the properties of G-protein-coupled receptors (GPCRs) on the assumption of cell surface expression. However, many GPCRs, including muscarinic acetylcholine receptors (mAChRs), have also been reported to be distributed in intracellular organelles in native tissues and cell lines. In this study, we compared the pharmacological profiles of exogenously and endogenously expressed M1-mAChRs, and evaluated the functional properties of these receptors. MAIN METHODS: Recombinant M1-mAChRs were expressed exogenously in Chinese hamster ovary cells (CHO-M1 cells) and compared with endogenously expressed M1-mAChRs in N1E-115 neuroblastoma cells. The pharmacological and functional profiles were evaluated using cell-permeable antagonists (1-quinuclidinyl-benzilate (QNB), pirenzepine and atropine) and cell-impermeable antagonists (N-methylscopolamine (NMS) or MT-7). KEY FINDINGS: M1-mAChRs were seen at the cell surface and intracellular sites in both cell lines. Under whole cell conditions, intracellular M1-mAChRs were mainly recognized by cell-permeable ligands, but scarcely by cell-impermeable ligands (at less than 100nM). In CHO-M1 cells, M1-mAChR activation by carbachol resulted in Ca(2+) mobilization, ERK1/2 phosphorylation and a reduction in thymidine incorporation, all of which were completely inhibited by MT-7, indicating the involvement of surface M1-mAChRs. In N1E-115 cells, Ca(2+) mobilization occurred through surface M1-mAChRs, whereas ERK1/2 phosphorylation and acceleration of thymidine incorporation were mediated through intracellular M1-mAChRs. SIGNIFICANCE: Exogenous and endogenous M1-mAChRs are present at both the cell surface and the intracellular organelles, and the pharmacological properties of geographically distinct M1-mAChRs are different, and may depend on cell background and/or exogenous or endogenous origin.


Assuntos
Organelas/metabolismo , Receptor Muscarínico M1/antagonistas & inibidores , Receptor Muscarínico M1/metabolismo , Proteínas Recombinantes/metabolismo , Análise de Variância , Animais , Atropina , Western Blotting , Células CHO , Cálcio/metabolismo , Cricetinae , Cricetulus , Camundongos , Microscopia Confocal , N-Metilescopolamina , Pirenzepina , Quinuclidinil Benzilato , Ensaio Radioligante , Trítio
3.
J Pharmacol Sci ; 113(2): 169-81, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20508391

RESUMO

Two distinct alpha(1)-adrenoceptor phenotypes (alpha(1A)- and alpha(1L)-ARs) are known to originate from a single ADRA1A(alpha(1a)) gene by an as-yet-unknown mechanism. We hypothesized that an alpha(1a)-AR-interacting protein could generate the alpha(1L)-AR phenotype and we sought to identify such a protein and to examine its effects on the expression of alpha(1A) and alpha(1L) phenotypes. Cysteine-rich epidermal growth factor-like domain 1alpha (CRELD1alpha) was first identified using a yeast two-hybrid approach as an alpha(1a)-AR-interacting protein. Transfection of alpha(1a)-AR cDNA alone yielded Chinese hamster ovary (CHO) cells expressing alpha(1A)-ARs having a predominant high affinity site for prazosin, with a low proportion (<10%) of prazosin-low affinity sites (alpha(1L)-AR). Knockdown of endogenous CHO-CRELD1alpha [alpha(1a)-CKD(alpha(1A)-enhanced) cells] enhanced the expression of alpha(1A)-AR, whereas over-expression of CRELD1alpha reduced alpha(1A)-AR expression, yielding alpha(1a)-COE(alpha(1L)-dominant) cells expressing a high proportion (50%) of the alpha(1L)-AR phenotype. The ligand binding and functional agonist and antagonist profiles in alpha(1a)-CKD(alpha(1A)-enhanced) and alpha(1a)-COE(alpha(1L)-dominant) cell lines were entirely in accord with the alpha(1A)-AR and alpha(1L)-AR phenotypes observed in intact tissues. CRELD1alpha down-regulates expression of the alpha(1A)-AR, thereby enhancing the proportion of expression of the alpha(1L)-AR phenotype. The alpha(1L)-AR-expressing alpha(1a)-COE(alpha(1L)-dominant) cell line reflects accurately the phenotype of this AR observed in vivo and will facilitate development of alpha(1L)-AR-targeted drugs.


Assuntos
Células CHO , Moléculas de Adesão Celular/isolamento & purificação , Moléculas de Adesão Celular/fisiologia , Regulação para Baixo , Proteínas da Matriz Extracelular/isolamento & purificação , Proteínas da Matriz Extracelular/fisiologia , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Moléculas de Adesão Celular/farmacologia , Cricetinae , Cricetulus , Proteínas da Matriz Extracelular/farmacologia , Feminino
4.
J Biol Chem ; 282(40): 29563-73, 2007 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17684020

RESUMO

Activation of G(q)-protein-coupled receptors, including the alpha(1A)-adrenoceptor (alpha(1A)-AR), causes a sustained Ca(2+) influx via receptor-operated Ca(2+) (ROC) channels, following the transient release of intracellular Ca(2+). Transient receptor potential canonical (TRPC) channel is one of the candidate proteins constituting the ROC channels, but the precise mechanism linking receptor activation to increased influx of Ca(2+) via TRPCs is not yet fully understood. We identified Snapin as a protein interacting with the C terminus of the alpha(1A)-AR. In receptor-expressing PC12 cells, co-transfection of Snapin augmented alpha(1A)-AR-stimulated sustained increases in intracellular Ca(2+) ([Ca(2+)](i)) via ROC channels. By altering the Snapin binding C-terminal domain of the alpha(1A)-AR or by reducing cellular Snapin with short interfering RNA, the sustained increase in [Ca(2+)](i) in Snapin-alpha(1A)-AR co-expressing PC12 cells was attenuated. Snapin co-immunoprecipitated with TRPC6 and alpha(1A)-AR, and these interactions were augmented upon alpha(1A)-AR activation, increasing the recruitment of TRPC6 to the cell surface. Our data suggest a new receptor-operated signaling mechanism where Snapin links the alpha(1A)-AR to TRPC6, augmenting Ca(2+) influx via ROC channels.


Assuntos
Receptores Adrenérgicos alfa 1/metabolismo , Canais de Cátion TRPC/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Humanos , Modelos Biológicos , Células PC12 , Estrutura Terciária de Proteína , Ratos , Transdução de Sinais , Canal de Cátion TRPC6 , Técnicas do Sistema de Duplo-Híbrido
5.
Yakugaku Zasshi ; 126 Spec no.: 187-98, 2006 Mar.
Artigo em Japonês | MEDLINE | ID: mdl-16518082

RESUMO

Alpha(1)-adrenoceptors are widely distributed in the human body and play important physiologic roles. Three alpha(1)-adrenoceptor subtypes (alpha(1A), alpha(1B) and alpha(1D)) have been cloned and show different pharmacologic profiles. In addition, a putative alpha(1)-adrenoceptor (alpha(1L) subtype) has also been proposed. Recently, three drugs (tamsulosin, naftopidil, and silodosin) have been developed in Japan for the treatment of urinary obstruction in patients with benign prostatic hyperplasia. In this review, we describe recent alpha(1)-adrenoceptor subclassifications and the pharmacologic characteristics (subtype selectivity and clinical relevance) of alpha(1)-adrenoceptor antagonists.


Assuntos
Antagonistas Adrenérgicos alfa , Receptores Adrenérgicos alfa 1/classificação , Antagonistas de Receptores Adrenérgicos alfa 1 , Antagonistas Adrenérgicos alfa/efeitos adversos , Antagonistas Adrenérgicos alfa/farmacologia , Antagonistas Adrenérgicos alfa/uso terapêutico , Sequência de Aminoácidos , Animais , Clonagem Molecular , Desenho de Fármacos , Tolerância a Medicamentos , Humanos , Masculino , Dados de Sequência Molecular , Naftalenos , Piperazinas , Hiperplasia Prostática/complicações , Hiperplasia Prostática/tratamento farmacológico , Receptores Adrenérgicos alfa 1/química , Receptores Adrenérgicos alfa 1/fisiologia , Sulfonamidas , Tansulosina , Obstrução Uretral/tratamento farmacológico , Obstrução Uretral/etiologia
6.
Pflugers Arch ; 448(6): 596-604, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15243741

RESUMO

To address the question of whether colonic secretory cells change their volume in response to carbachol (CCh) stimulation and, if so, the mechanisms involved therein, we used two-photon laser scanning microscopy to measure the volume of individual epithelial cells in the fundus region of crypts isolated from the guinea-pig distal colon. We also measured the volume of human colonic epithelial T84 cells using an electronic sizing technique. Both types of colonocytes responded to stimulation by CCh with shrinkage and then underwent a regulatory volume increase (RVI), even during continued stimulation by CCh. The secretory volume decrease (SVD) induced by CCh was antagonized by atropine, BAPTA loading and niflumic acid, a blocker of Ca(2+)-activated Cl(-) channels. An increase in the intracellular free [Ca(2+)] was observed with fura-2 during these volume responses to CCh. Removal of all Na(+) or K(+) or of most of the Cl(-) from the extracellular solution abolished the RVI, but not the preceding SVD. The RVI, but not the preceding SVD, was abolished by bumetanide, a blocker of the Na(+)-K(+)-2Cl(-) cotransporter. We conclude that guinea-pig crypt colonocytes and human T84 cells exhibit a cytosolic Ca(2+)-dependent SVD and undergo a subsequent RVI that is dependent on the operation of Na(+)-K(+)-2Cl(-) cotransporters.


Assuntos
Carbacol/farmacologia , Tamanho Celular/efeitos dos fármacos , Colo/efeitos dos fármacos , Ácido Egtázico/análogos & derivados , Células Epiteliais/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Animais , Atropina/farmacologia , Bumetanida/farmacologia , Cálcio/metabolismo , Carbacol/antagonistas & inibidores , Linhagem Celular , Células Cultivadas , Colo/metabolismo , Ácido Egtázico/farmacologia , Células Epiteliais/metabolismo , Feminino , Cobaias , Humanos , Microscopia Confocal , Ácido Niflúmico/farmacologia , Técnicas de Patch-Clamp
7.
Glia ; 47(1): 46-57, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15139012

RESUMO

Chloride channels play an important role in glial astrocyte function. However, in astrocytes, no chloride channels besides the gamma-aminobutyric acid (GABA)A receptor, glycine receptor, and ClC-2 chloride channels have been molecularly identified. In this study, we examined the expression of the ClC-1 chloride channel in rat astrocytic glioma C6 cells and rat primary astrocytes. Five isoforms of ClC-1, but not skeletal muscle ClC-1 (SM ClC-1), were found to be expressed in C6 cells. Comparison with rat SM ClC-1 showed that common features shared by these isoforms are a short 3' end with a deletion of the nucleotides from 3115 to 3197 and a substitution of T by C at nucleotides 480 and 1733. Three of the five isoforms, M1, M2, and M3, were produced by partial deletion of ClC-1 exon 7, partial insertion of ClC-1 exon 7a, and a TAG insertion at nucleotide 858, respectively. One of the two remaining isoforms, M4, was produced by partial deletion of ClC-1 exon 8 at nucleotide 937; the other, M5, was the same as SM ClC-1 except for the short 3' end and substitutions at the two positions. Only the M5 isoform could be expressed as a functional channel in Xenopus oocytes. This glial isoform exhibited less dependence on voltage and extracellular Cl- than rat SM ClC-1. However, the anion selectivity sequence and the anthracene-9-carboxylic acid (9-AC) sensitivity of this channel were the same as for SM ClC-1. Since whole-cell recordings failed to detect ClC-1-like Cl- currents in C6 cells, it appears that the ClC-1 isoform is functioning in intracellular organelles. In rat primary astrocytes, we found that the M2 isoform as well as two additional distinct isoforms were expressed. The present study showed that astrocytic glial cells express multiple isoforms of the ClC-1 chloride channel, which has been thought to be expressed almost exclusively in the skeletal muscle.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Canais de Cloreto/genética , Animais , Antracenos/farmacologia , Astrócitos/ultraestrutura , Sequência de Bases/genética , Encéfalo/citologia , Linhagem Celular Tumoral , Canais de Cloreto/biossíntese , Cloretos/metabolismo , DNA Complementar/análise , DNA Complementar/genética , Éxons/genética , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Organelas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , RNA Mensageiro/genética , Ratos
8.
Glia ; 41(3): 247-59, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12528180

RESUMO

Hypotonic challenge induces transient swelling in glial cells, which is typically followed by a regulatory volume decrease (RVD). In contrast, lactic acidosis (lactacidosis) induces persistent cell swelling in astrocytes without an accompanying RVD. In the present study, we studied the mechanisms by which lactacidosis interferes with normal volume regulation in rat astrocytic glioma C6 cells. Following exposure of C6 cells to a hypotonic challenge, a current was detected that exhibited properties consistent with those of volume-sensitive outwardly rectifying (VSOR) anion channels. When exposed to in vitro conditions designed to simulate lactacidosis, C6 cells failed to respond to hypotonic stress with an RVD, and VSOR anion currents were not activated. When added to C6 cells, an anion channel-forming protein purified from Helicobacter pylori, VacA, was found to form anion-selective channels in the plasma membrane, and the activity of the VacA channel was not affected by lactacidosis (pH 6.2). Cells preincubated with VacA and then exposed to lactacidotic conditions underwent transient swelling followed by RVD. In contrast, application of a cation ionophore, gramicidin, failed to inhibit lactacidosis-induced persistent cell swelling. From these results, we conclude that inhibition of a volume-sensitive anion channel contributes to persistent swelling induced by lactacidosis in glial cells. Introduction of anion channel activity into glial cells might provide a novel approach for treating cerebral edema, which is associated with lactacidosis in cerebral ischemia or head injury.


Assuntos
Acidose Láctica/metabolismo , Proteínas de Bactérias/metabolismo , Glioma , Neuroglia/metabolismo , Animais , Ânions/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Soluções Hipotônicas/farmacologia , Potenciais da Membrana/fisiologia , Neuroglia/patologia , Técnicas de Patch-Clamp , Ratos , Células Tumorais Cultivadas , Equilíbrio Hidroeletrolítico/fisiologia
9.
Am J Physiol Cell Physiol ; 284(1): C77-84, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12388088

RESUMO

Parallel activation of Ca(2+)-dependent K(+) channels and volume-sensitive Cl(-) channels is known to be responsible for KCl efflux during regulatory volume decrease (RVD) in human epithelial Intestine 407 cells. The present study was performed to identify the K(+) channel type. RT-PCR demonstrated mRNA expression of Ca(2+)-activated, intermediate conductance K(+) (IK), but not small conductance K(+) (SK1) or large conductance K(+) (BK) channels in this cell line. Whole cell recordings showed that ionomycin or hypotonic stress activated inwardly rectifying K(+) currents that were reversibly blocked by IK channel blockers [clotrimazole (CLT) and charybdotoxin] but not by SK and BK channel blockers (apamin and iberiotoxin). Inside-out recordings revealed the existence of CLT-sensitive single K(+)-channel activity, which exhibited an intermediate unitary conductance (30 pS at -100 mV). The channel was activated by cytosolic Ca(2+) in inside-out patches and by a hypotonic challenge in cell-attached patches. The RVD was suppressed by CLT, but not by apamin or iberiotoxin. Thus we conclude that the IK channel is involved in the RVD process in these human epithelial cells.


Assuntos
Células Epiteliais/citologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Análise de Variância , Linhagem Celular , Tamanho Celular/efeitos dos fármacos , Tamanho Celular/fisiologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Humanos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/biossíntese , Canais de Potássio Corretores do Fluxo de Internalização/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
10.
Jpn J Physiol ; 53(5): 357-65, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14975182

RESUMO

Pathophysiological functions of cardiac cystic fibrosis transmembrane conductance regulator (cCFTR) in ischemia are not well known. Using neonatal rat ventricular cardiomyocytes in primary culture in this study, we thus examined whether the CFTR protein is expressed and is functioning as a cAMP-activated anion channel on the plasma membrane under ischemic conditions. After the cells were subjected to simulated ischemia (O(2) and glucose deprivation), an up-regulation of the CFTR expression was transiently observed in the membrane fraction by Western blot. A peak expression of mature CFTR protein was found at 3 h of ischemia, and thereafter the signal diminished gradually. In contrast, the results of Northern blot indicated that the expression level of CFTR mRNA changed little until 3 h of ischemia, whereas the level slightly decreased after 8 h of ischemia. An immunohistochemical examination showed, in agreement with the results of Western blot analysis, that the expression of CFTR protein on the plasma membrane became most prominent at 3 h of ischemia, whereas the plasmalemmal CFTR signal was markedly reduced after 8 h of ischemia. Whole-cell recordings showed that the cardiomyocytes responded to cAMP with an activation of time- and voltage-independent currents that contained an anion-selective component sensitive to CFTR Cl(-) channel blockers (NPPB and glibenclamide) but not to a stilbene-derivative conventional Cl(-) channel blocker (SITS). This cAMP-activated Cl(-) channel current was found to be enhanced after an application of ischemic stress for 3 to 4 h. These findings indicate that a plasmalemmal expression of CFTR is transiently enhanced under glucose-free hypoxic conditions presumably because of a posttranslational control.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Northern Blotting , Western Blotting , Hipóxia Celular , Membrana Celular/metabolismo , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Eletrofisiologia , Imunofluorescência , Ventrículos do Coração/citologia , Miócitos Cardíacos/ultraestrutura , Técnicas de Patch-Clamp , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA