Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nurs Rep ; 14(1): 413-427, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38391077

RESUMO

With the International Commission on Radiological Protection's (ICRP) reduction in the radiation dose threshold for cataracts, evaluating and preventing radiation exposure to the lens of the eye among interventional radiology (IR) staff have become urgent tasks. In this study, we focused on differences in lens-equivalent dose (HT Lens) to which IR nurses in three hospitals were exposed and aimed to identify factors underlying these differences. According to analyses of time-, distance-, and shielding-related factors, the magnitude of the HT Lens dose to which IR nurses were exposed could be explained not by time or shielding but by the distance between the X-ray exposure field and the location of the IR nurse. This distance tended to be shorter in hospitals with fewer staff. The most effective means of reducing the exposure of the lenses of IR nurses' eyes to radiation is to position them at least two meters from the radiation source during angiography procedures. However, some hospitals must provide IR departments with comparatively few staff. In work environments where it is infeasible to reduce exposure by increasing distance, interventions to reduce time by managing working practices and investment in shielding equipment are also important. This study was not registered.

2.
Radiat Prot Dosimetry ; 199(15-16): 1774-1778, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819354

RESUMO

Chronic radiation exposure increases the risk of skin damage of medical personnel engaged in radiology. However, hand dose measurements in computed tomography (CT) for diagnostic purposes have not been evaluated. The occupational radiation dose to the hands of CT assistants was herein investigated to evaluate its compliance with the equivalent dose limit for the hand (500 mSv/year). The occupational doses of nine CT assistants were measured in 89 cases (April 2017-May 2018) by installing radio-photoluminescence glass dosemeters (GD-302 M) (70-µm dose-equivalent conversion coefficient = 0.37) on the dorsal aspect of both hands. The occupational dose to the hand was the highest with head holding (right: 1.14 mSv/CT scan, left: 1.07 mSv/CT scan). Considering the results for annual work, even for head holding, the hand dose of the CT-assisting personnel was insignificant. However, CT assistants should be mindful of the possibility of locally higher doses to hands.


Assuntos
Exposição Ocupacional , Humanos , Doses de Radiação , Exposição Ocupacional/análise , Mãos/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Corpo Clínico
3.
Artigo em Inglês | MEDLINE | ID: mdl-36554706

RESUMO

Interventional radiology (IR) physicians must be equipped with personal passive dosimeters and personal protective equipment (PPE); however, they are inconsistently used. Therefore, we aimed to explore practical measures to increase PPE usage and ascertain whether these measures could lead to an actual decrease in exposure doses to IR physicians. Dosimeters and PPE were visually inspected. Then, a pre-operative briefing was conducted as a direct intervention, and the use of dosimeters and PPE was verbally confirmed. Finally, the intervention effect was verified by measuring the use rates and individual exposure doses. Because of the intervention, the use rate markedly improved and was almost 100%. However, both the effective dose rate (effective dose/fluoroscopy time) and the lens equivalent dose rate (lens equivalent dose/fluoroscopy time) showed that the intervention led to a statistically significant increase in exposure (effective dose rate: p = 0.033; lens equivalent dose rate: p = 0.003). In conclusion, the proper use of dosimeters and PPE raised the radiation exposure values for IR physicians immediately after the intervention, which was hypothesized to be due to the inclusion of exposure overlooked to date and the changes in the dosimeter management method from a single- to a double-dosimeter approach.


Assuntos
Cristalino , Exposição Ocupacional , Médicos , Humanos , Dosímetros de Radiação , Radiologia Intervencionista , Equipamento de Proteção Individual , Exposição Ocupacional/prevenção & controle , Doses de Radiação
4.
J Neuroendovasc Ther ; 16(10): 491-497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37502201

RESUMO

Objective: In interventional neuroradiology (INR), the evaluation of the peak skin dose (PSD) and lens dose is important because the patient radiation dose increases in cases in which the procedure is more difficult and complex. This study evaluated the radiation doses during INR procedures using a direct measurement system. Methods: Radiation dose measurements during INR were performed in 332 patients with unruptured aneurysm (URAN), dural arteriovenous fistula (DAVF), and arteriovenous malformation (AVM). The PSD and bilateral lens doses were analyzed for each disease. The Pearson correlation test was used to determine whether the PSD and lens doses were linearly related to the reference air kerma (Ka,r). Results: In all cases, the PSD and right and left lens doses were 2.36 ± 1.28 Gy, 114.2 ± 54.6 mGy, and 189.8 ± 160.3 mGy, respectively. The PSD and lens doses of the DAVF and AVM cases were significantly higher than those of the URAN case. The Pearson correlation test revealed statistically significant positive correlations between Ka,r and PSD, Ka,r and right lens dose, and Ka,r and left lens dose. Conclusion: The characteristics of radiation dose in INR were clarified. Owing to the concern of increased radiation doses exceeding the threshold values in DAVF and AVM cases, protection from radiation is required. Simple regression analysis revealed the possibility of precisely predicting PSD using Ka,r.

5.
J Neuroendovasc Ther ; 16(7): 354-360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37502341

RESUMO

Objective: To meet the new standard of the annual dose limit for the eye lens recommended by the International Commission on Radiation Protection, radiation doses of neuroendovascular procedures in Japanese institutions were investigated. Methods: Radiation doses to operators involved in 304 neuroendovascular procedures at 30 Japanese institutions were prospectively surveyed. The institutions recruited at an annual meeting of the Japanese Society for Neuroendovascular Therapy participated voluntarily. A maximum of 10 wireless dosimeters were attached to the radiation protection (RP) goggles, the ceiling-mounted RP shielding screen, and the operators' forehead and neck over the protective clothing. Doses recorded inside the goggles were defined as eye lens doses for operators who wore RP goggles, while doses to the forehead were defined as eye lens doses for those who did not. The shielding effect rates of the protection devices were calculated, and statistical analysis was performed for the comparison of radiation doses. Results: From 296 analyzed cases, mean eye lens radiation doses per procedure were 0.088 mGy for the left eye and 0.041 mGy for the right eye. For the left eye, that dose without RP equipment was 0.176 mGy and that with RP goggles plus an RP shielding screen was 0.034 mGy. Four parameters, including left eye dose, air kerma at the patient entrance reference point, fluoroscopic time, and the total number of frames, were assessed for five types of neurovascular procedures. Of them, transarterial embolization for dural arteriovenous fistula was associated with the highest eye lens dose at 0.138 mGy. The shielding effect rates of protection goggles were 60% for the left and 55% for the right RP goggle. The mean doses to the inner and outer surfaces of the RP shielding screen were 0.831 mGy and 0.040 mGy, respectively, amounting to a shielding effect rate of 95%. Conclusion: To meet the new standard, both RP goggles and RP shielding screens are strongly recommended to be used effectively. Without proper use of radiological protection devices, the number of neuroendovascular procedures that one operator performs per year will be limited under the new guideline.

6.
J Occup Health ; 63(1): e12305, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34889490

RESUMO

PURPOSE: We investigated occupational dose to the lens of the eye for physicians engaged in radiology procedures. We evaluated the potential for compliance with the new-equivalent dose limits to the lens of the eye. Further, a "multiple radiation protection" protocol was proposed according to the basic principles of occupational health, and its effectiveness was estimated. METHODS: Physicians engaged in radiology procedure at medical facilities in Japan were included in this study. The eye lens dose (3-mm dose equivalent: Hp (3)) for each participant was measured using a small radio-photoluminescence glass dosimeter mounted on lead glasses. Physicians were directed to procedure multiple radiation protection measures to evaluate their usefulness. RESULTS: The Hp (3) was reduced by multiple radiation protection in all physicians. In particular, the Hp (3) reduced from 207.7 to 43.2 µSv/procedure and from 21.6 to 10.2 µSv/procedure in cardiovascular internal physician and cerebrovascular physician, respectively, after the implementation of the proposed multiple radiation protection measures. The dose reduction rate of these measures was 53% (range: 37%-79%). CONCLUSIONS: The radiation doses received by the eye lenses of physicians engaged in radiology procedure may exceed the dose limits to the lens of the eye if radio-protective equipment and imaging conditions are not properly controlled. However, based on the lens equivalent dose data, the implementation of "multiple radiation protection" according to the basic principles of occupational health can ensure compliance with the new-equivalent dose limits to the lens of the eye without placing an undue burden on individual physicians or medical facilities.


Assuntos
Cristalino , Médicos , Doses de Radiação , Radiologia , Humanos , Japão
7.
Eur J Radiol ; 143: 109925, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34482175

RESUMO

PURPOSE: An augmented reality (AR) application to help medical staff involved in interventional radiology (IR) learn how to properly use ceiling-suspended radiation shielding screens was created, and its utility was tested from the perspective of learner motivation. METHOD: The distribution of scattered radiation in an angiography room was visualized with an AR application in three settings: when a ceiling-suspended radiation shielding screen is not used (incorrect); when there is a gap between the bottom edge of the shielding screen and the patient's torso (incorrect); and when there is no gap between the bottom edge of the shielding screen and the patient's torso (correct). This AR application was used by 33 medical staff, after which an Instructional Materials Motivation Survey (IMMS) based on the John Keller's ARCS (four categories of Attention, Relevance, Confidence, and Satisfaction) Motivation Model, consisting of 36-items with responses on a 5-point (1-5) Likert scale, was conducted. RESULTS: The overall score was a high 4.67 ± 0.30 (mean ± standard deviation). Physician's scores tended to be lower than those of other medical staff in the categories of Attention, Relevance, and Satisfaction (not statistically significant). CONCLUSIONS: The AR application to learn how to properly use ceiling-suspended radiation shielding screens was highly rated from the perspective of learner motivation.


Assuntos
Realidade Aumentada , Proteção Radiológica , Angiografia , Humanos , Radiologia Intervencionista , Tecnologia
8.
Diagnostics (Basel) ; 11(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34441349

RESUMO

A short curtain that improves on the low versatility of existing long curtains was developed as a dedicated radiation protective device for the over-table tube fluorographic imaging units. The effect of this short curtain in preventing cataracts was then examined. First, the physician lens dose reduction rate was obtained at the position of the lens. Next, the reduction rate in the collective equivalent dose for the lens of the physician's eye was estimated. The results showed that lens dose reduction rates with the long curtain and the short curtain were 88.9% (literature-based value) and 17.6%, respectively, higher with the long curtain. In our hospital, the reduction rate in the collective equivalent dose for the lens of the physician's eye was 9.8% and 17.6% with a procedures mixture, using the long curtain where technically possible and no curtain in all other procedures, and the short curtain in all procedures, respectively, higher with the short curtain. Moreover, a best available for curtains raised the reduction rate in the collective equivalent dose for the lens of the physician's eye a maximum of 25.5%. By introducing the short curtain, it can be expected to have an effect in preventing cataracts in medical staff.

9.
Sci Rep ; 11(1): 6716, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762608

RESUMO

Ionizing radiation exposure may not only cause acute radiation syndrome, but also an increased risk of late effects. It has been hypothesized that induction of chronic oxidative stress mediates the late effects of ionizing radiation. However, only a few reports have analyzed changes in long-term antioxidant capacity after irradiation in vivo. Our previous study demonstrated changes in whole-blood antioxidant capacity and red blood cell (RBC) glutathione levels within 50 days after total body irradiation (TBI). In this study, seven-week-old, male, C57BL/6J mice exposed to total body irradiation by X-ray and changes in whole-blood antioxidant capacity and RBC glutathione levels at ≥ 100 days after TBI were investigated. Whole-blood antioxidant capacity was chronically decreased in the 5-Gy group. The RBC reduced glutathione (GSH) level and the GSH/oxidative glutathione (GSSG) ratio were chronically decreased after ≥ 1 Gy of TBI. Interestingly, the complete blood counts (CBC) changed less with 1-Gy exposure, suggesting that GSH and the GSH/GSSG ratio were more sensitive radiation exposure markers than whole-blood antioxidant capacity and CBC counts. It has been reported that GSH depletion is one of the triggers leading to cataracts, hypertension, and atherosclerosis, and these diseases are also known as radiation-induced late effects. The present findings further suggest that chronic antioxidant reduction may contribute to the pathogenesis of late radiation effects.


Assuntos
Antioxidantes/metabolismo , Oxirredução/efeitos da radiação , Irradiação Corporal Total/efeitos adversos , Animais , Biomarcadores , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Masculino , Camundongos , Estresse Oxidativo/efeitos da radiação , Doses de Radiação , Lesões por Radiação , Radiação Ionizante
10.
Heliyon ; 7(1): e06063, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33553745

RESUMO

PURPOSE: We investigated occupational dose to the lens of the eye for CT-assisting personnel for diagnostic purposes using a radio-photoluminescent glass dosimeter (RPLD) and evaluate compliance with the new equivalent dose limit for the lens of the eye (20 mSv/year). Further, we proposed the implementation of "multiple protective measures" and estimated its effect. METHOD: An eye lens dosimeter clip was developed specifically to attach RPLDs inside radiation safety glasses in an L-shape. Using a total of six RPLDs attached to the radiation safety glasses, the 3-mm dose-equivalent (Hp(3)) to the lens of the eye for medical staff (n = 11; 6 intensive care physicians, 2 pediatricians, 3 radiological technologists) who assisted patients during CT scan for "diagnostic" purpose (n = 91) was measured. We evaluated the dose reduction efficiencies with radiation safety glasses and bag-valve-mask extension tube. We also estimated the protection efficiency with radiation protection curtain introduced in front of the staff's face via the phantom experiment. RESULTS: Without wearing radiation safety glasses, Hp(3) to the lens of the eye was greatest for intensive care physicians (0.49 mSv/procedure; allowing 40 procedures to be performed annually), followed by pediatricians (0.30 mSv/procedure; 66 procedures annually) and radiological technologists (0.28 mSv/procedure; 71 procedures annually). Use of each type of protective tools: radiation safety glasses (0.07-mm-Pb), bag-valve-mask extension tube (20 cm) and radiation protective curtain (0.25-mm-Pb), reduced Hp(3) to the lens of the eye by 51%, 31% and 61%, respectively. CONCLUSION: Intensive care physicians perform most assisted ventilations with the bag-valve-mask during "diagnostic" CT scans, and may exceed the equivalent dose limit for the lens of the eye if radiation safety glasses are not worn. If "multiple protective measures" are implemented, compliance with the equivalent dose limit for the lens of the eye should be achievable without placing significant burdens on physicians or medical institutions.

11.
Diagnostics (Basel) ; 11(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374876

RESUMO

Understanding the maximum skin dose is important for avoiding tissue reactions in cerebral angiography. In this study, we devised a method for using digital imaging and communication in medicine-radiation dose structured report (DICOM-RDSR) data to accurately estimate the maximum skin dose from the total air kerma at the patient entrance reference point (Total Ka,r). Using a test data set (n = 50), we defined the mean ratio of the maximum skin dose obtained from measurements with radio-photoluminescence glass dosimeters (RPLGDs) to the Total Ka,r as the conversion factor, CFKa,constant, and compared the accuracy of the estimated maximum skin dose obtained from multiplying Total Ka,r by CFKa,constant (Estimation Model 1) with that of the estimated maximum skin dose obtained from multiplying Total Ka,r by the functional conversion factor CFKa,function (Estimation Model 2). Estimation Model 2, which uses the quadratic function for the ratio of the fluoroscopy Ka,r to the Total Ka,r (Ka,r ratio), provided an estimated maximum skin dose closer to that obtained from direct measurements with RPLGDs than compared with that determined using Estimation Model 1. The same results were obtained for the validation data set (n = 50). It was suggested the quadratic function for the Ka,r ratio provides a more accurate estimate of the maximum skin dose in real time.

12.
Int J Mol Sci ; 21(3)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012663

RESUMO

Biodosimetry is a useful method for estimating personal exposure doses to ionizing radiation. Studies have identified metabolites in non-cellular biofluids that can be used as markers in biodosimetry. Levels of metabolites in blood cells may reflect health status or environmental stresses differentially. Here, we report changes in the levels of murine blood cell metabolites following exposure to X-rays in vivo. Levels of blood cell metabolites were measured by capillary electrophoresis time-of-flight mass spectrometry. The levels of 100 metabolites were altered substantially following exposure. We identified 2-aminobutyric acid, 2'-deoxycytidine, and choline as potentially useful markers of radiation exposure and established a potential prediction panel of the exposure dose using stepwise regression. Levels of blood cell metabolites may be useful biomarkers in estimating exposure doses during unexpected radiation incidents.


Assuntos
Biomarcadores , Células Sanguíneas/metabolismo , Células Sanguíneas/efeitos da radiação , Eletroforese Capilar , Radiação Ionizante , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Dose-Resposta à Radiação , Metaboloma , Metabolômica/métodos
13.
Radiat Prot Dosimetry ; 188(3): 389-396, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31922569

RESUMO

The purpose of this study was to measure the peak skin dose (PSD) and bilateral lens doses using radiophotoluminescence glass dosimeters and to determine the factors influencing the radiation dose in cases of cerebral aneurysm treated with pipeline embolization devices (PEDs). The cumulative dose, PSD and right and left lens doses were 3818.1 ± 1604.6, 1880.0 ± 723.0, 124.8 ± 49.2 and 180.7 ± 124.8 mGy, respectively. Using multivariate analysis, body mass index (p < 0.01; odds ratio (OR) = 1.806; 95% confidence interval (CI) = 1.007-3.238) and deployment time of PED (p < 0.05; OR = 1.107; 95% CI = 1.001-1.224) were found to be the independent predictors of PSD exceeding 2 Gy. Measures such as collimation of the radiation field and optimization of radiation dose should be taken to reduce the radiation to the patient.


Assuntos
Embolização Terapêutica , Aneurisma Intracraniano , Angiografia Cerebral , Humanos , Aneurisma Intracraniano/terapia , Doses de Radiação , Estudos Retrospectivos , Resultado do Tratamento
14.
Int J Cancer ; 146(11): 3098-3113, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31495919

RESUMO

Ionizing radiation (IR) and cisplatin are frequently used cancer treatments, although the mechanisms of error-prone DNA repair-mediated genomic instability after anticancer treatment are not fully clarified yet. RECQL4 mutations mainly in the C-terminal region of the RECQL4 gene lead to the cancer-predisposing Rothmund-Thomson syndrome, but the function of RECQL4ΔC (C-terminus deleted) in error-prone DNA repair remains unclear. We established several RECQL4ΔC cell lines and found that RECQL4ΔC cancer cells, but not RECQL4ΔC nontumorigenic cells, exhibited IR/cisplatin hypersensitivity. Notably, RECQL4ΔC cancer cells presented increased RPA2/RAD52 foci after cancer treatments. RECQL4ΔC HCT116 cells exhibited increased error-prone single-strand annealing (SSA) activity and decreased alternative end-joining activities, suggesting that RECQL4 regulates the DNA repair pathway choice at double-strand breaks. RAD52 depletion by siRNA or RAD52 inhibitors (5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside [AICAR], (-)-epigallocatechin [EGC]) or a RAD52-phenylalanine 79 aptamer significantly restrained the growth of RAD52-upregulated RECQL4ΔC HCT116 cells in vitro and in mouse xenografts. Remarkably, compared to single-agent cisplatin or EGC treatment, cisplatin followed by low-concentration EGC had a significant suppressive effect on RECQL4ΔC HCT116 cell growth in vivo. Together, the regimens targeting the RAD52-mediated SSA pathway after anticancer treatment may be applicable for cancer patients with RECQL4 gene mutations.


Assuntos
Cisplatino/farmacologia , Reparo do DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Radiação Ionizante , RecQ Helicases/genética , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Quebras de DNA de Cadeia Dupla , Células HCT116 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transplante de Neoplasias , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Proteína Rad52 de Recombinação e Reparo de DNA/antagonistas & inibidores , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína de Replicação A/genética , Transplante Heterólogo
15.
J Radiat Res ; 60(5): 573-578, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31251351

RESUMO

Clinical radiodiagnosis and radiotherapy sometimes induce tissue damage and/or increase the risk of cancer in patients. However, in radiodiagnosis, a reduction in the exposure dose causes a blockier image that is not acceptable for diagnosis. Approximately 70% of DNA damage is induced via reactive oxygen species and/or radicals created during X-ray irradiation. Therefore, treatment with anti-oxidants and/or radical scavengers is considered to be effective in achieving a good balance between image quality and damage. However, few studies have examined the effect of using radical scavengers to reduce radiation damage in the clinical setting. In this study, we administrated 20 mg/kg ascorbic acid (AA) to patients before cardiac catheterization (CC) for diagnostic purposes. We analyzed changes in the number of phosphorylated H2AX (γH2AX) foci (a marker of DNA double-strand breaks) in lymphocytes, red blood cell glutathione levels, blood cell counts, and biochemical parameters. Unfortunately, we did not find satisfactory evidence to show that AA treatment reduces γH2AX foci formation immediately after CC. AA treatment did, however, cause a higher reduced/oxidized glutathione ratio than in the control arm immediately after CC. This is a preliminary study, but this result suggests that reducing radiation damage in clinical practice can be achieved using a biological approach.


Assuntos
Ácido Ascórbico/farmacologia , Cateterismo Cardíaco , Ácido Ascórbico/sangue , Eritrócitos/metabolismo , Glutationa/sangue , Histonas/metabolismo , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Fosforilação , Projetos Piloto
16.
Artigo em Japonês | MEDLINE | ID: mdl-30890674

RESUMO

To optimize the radiation protection of patients, we investigated the possibility of constructing the diagnostic reference levels (DRLs) by imaging objective/disease group using display value of the blood vessel imaging apparatus (air kerma-area product: PKA, air kerma at the patient entrance reference point: Ka, r) in cerebral angiography. We used PKA and Ka, r recorded during surgery of 997 patients at our hospital, and classified them according to the purpose of imaging (diagnostic cerebral angiography or neuro interventional radiology) and disease group. Neuro interventional radiology (PKA: 268±155 Gy・cm2, Ka, r: 2420±1462 mGy) was significantly higher than that of diagnostic cerebral angiography (PKA: 161±70 Gy・cm2, Ka, r: 1112±485 mGy), (Mann-Whitney test, P<0.01). Significant difference was found between PKA and Ka, r for imaging purpose and disease group (Kruskal-Wallis test, P<0.05). It is highly probable that the DRL for cerebral angiography can be constructed by imaging purpose/disease group using display value (PKA, Ka, r) of the blood vessel imaging apparatus.


Assuntos
Angiografia Cerebral , Proteção Radiológica , Fluoroscopia , Humanos , Doses de Radiação , Estudos Retrospectivos
17.
Sci Rep ; 8(1): 7425, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743580

RESUMO

Many reports have demonstrated that radiation stimulates reactive oxygen species (ROS) production by mitochondria for a few hours to a few days after irradiation. However, these studies were performed using cell lines, and there is a lack of information about redox homeostasis in irradiated animals and humans. Blood redox homeostasis reflects the body condition well and can be used as a diagnostic marker. However, most redox homeostasis studies have focused on plasma or serum, and the anti-oxidant capacity of whole blood has scarcely been investigated. Here, we report changes in the anti-oxidant capacity of whole blood after X-ray irradiation using C57BL/6 J mice. Whole-blood anti-oxidant capacity was measured by electron spin resonance (ESR) spin trapping using a novel spin-trapping agent, 2-diphenylphosphinoyl-2-methyl-3,4-dihydro-2H-pyrrole N-oxide (DPhPMPO). We found that whole-blood anti-oxidant capacity decreased in a dose-dependent manner (correlation factor, r > 0.9; P < 0.05) from 2 to 24 days after irradiation with 0.5-3 Gy. We further found that the red blood cell (RBC) glutathione level decreased and lipid peroxidation level increased in a dose-dependent manner from 2 to 6 days after irradiation. These findings suggest that blood redox state may be a useful biomarker for estimating exposure doses during nuclear and/or radiation accidents.


Assuntos
Antioxidantes/metabolismo , Sangue/metabolismo , Sangue/efeitos da radiação , Animais , Contagem de Células , Relação Dose-Resposta à Radiação , Eritrócitos/metabolismo , Eritrócitos/efeitos da radiação , Glutationa/metabolismo , Hemoglobinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos da radiação , Radiometria , Fatores de Tempo
18.
PLoS One ; 12(4): e0176162, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28426747

RESUMO

Medulloblastoma is a fatal brain tumor in children, primarily due to the presence of treatment-resistant medulloblastoma stem cells. The energy metabolic pathway is a potential target of cancer therapy because it is often different between cancer cells and normal cells. However, the metabolic properties of medulloblastoma stem cells, and whether specific metabolic pathways are essential for sustaining their stem cell-like phenotype and radioresistance, remain unclear. We have established radioresistant medulloblastoma stem-like clones (rMSLCs) by irradiation of the human medulloblastoma cell line ONS-76. Here, we assessed reactive oxygen species (ROS) production, mitochondria function, oxygen consumption rate (OCR), energy state, and metabolites of glycolysis and tricarboxylic acid cycle in rMSLCs and parental cells. rMSLCs showed higher lactate production and lower oxygen consumption rate than parental cells. Additionally, rMSLCs had low mitochondria mass, low endogenous ROS production, and existed in a low-energy state. Treatment with the metabolic modifier dichloroacetate (DCA) resulted in mitochondria dysfunction, glycolysis inhibition, elongated mitochondria morphology, and increased ROS production. DCA also increased radiosensitivity by suppression of the DNA repair capacity through nuclear oxidization and accelerated the generation of acetyl CoA to compensate for the lack of ATP. Moreover, treatment with DCA decreased cancer stem cell-like characters (e.g., CD133 positivity and sphere-forming ability) in rMSLCs. Together, our findings provide insights into the specific metabolism of rMSLCs and illuminate potential metabolic targets that might be exploited for therapeutic benefit in medulloblastoma.


Assuntos
Neoplasias Cerebelares/patologia , Meduloblastoma/patologia , Células-Tronco Neoplásicas/patologia , Tolerância a Radiação , Linhagem Celular Tumoral , Neoplasias Cerebelares/metabolismo , Ácido Dicloroacético/farmacologia , Glicólise , Humanos , Meduloblastoma/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo
19.
J UOEH ; 38(4): 335-343, 2016.
Artigo em Japonês | MEDLINE | ID: mdl-27980317

RESUMO

The recent progress in angiography technology bestows benefits on patients for minimally invasive than surgery, while there has been an increase in the number of cases involving stochastic effects, such as radiation dermatitis, resulting from upgrading of the procedure because of an extension of the time for fluoroscopy and the number of shots. Recent CT equipment saves the dose data along with image data about the information management for patient exposure dose, which is used for management of individual cumulative dose and the presumed effective dose, using digital imaging and communication in medicine (DICOM). We extracted detailed information about shooting conditions and dose from the DICOM radiation dose structured report (DICOM RDSR) in the angiography area, and evaluated the trend of patient exposure dose in each procedure. As a result, we found that cases exceeding 3 Gy which needed observation in the head region were 16.7% and in the heart region were 27.3%. We also found that angiography had a higher dose of shooting than did fluoroscopy, and that the diagnosis and treatment with tumor involvement required a exposure dose than did vascular lesion. In this paper, we review the shooting conditions as a root of DICOM RDSR information and consider the possibility of planning for further reduction of the exposure dose.


Assuntos
Angiografia/métodos , Transtornos Cerebrovasculares/diagnóstico por imagem , Cardiopatias/diagnóstico por imagem , Pescoço/irrigação sanguínea , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pescoço/diagnóstico por imagem , Doses de Radiação , Software
20.
J Radiat Res ; 56(5): 768-76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26141370

RESUMO

We generated low-flux X-ray micro-planar beams (MPBs) using a laboratory-scale industrial X-ray generator (60 kV/20 mA) with custom-made collimators with three different peak/pitch widths (50/200 µm, 100/400 µm, 50/400 µm). To evaluate normal skin reactions, the thighs of C3H/HeN mice were exposed to 100 and 200 Gy MPBs in comparison with broad beams (20, 30, 40, 50, 60 Gy). Antitumor effects of MPBs were evaluated in C3H/HeN mice with subcutaneous tumors (SCCVII). After the tumors were irradiated with 100 and 200 Gy MPBs and 20 and 30 Gy broad beams, the tumor sizes were measured and survival analyses were performed. In addition, the tumors were excised and immunohistochemically examined to detect γ-H2AX, ki67 and CD34. It was shown that antitumor effects of 200 Gy MPBs at 50/200 µm and 100/400 µm were significantly greater than those of 20 Gy broad beams, and were comparable with 30 Gy broad beams. γ-H2AX-positive cells demonstrated clear stripe-patterns after MPB irradiation; the pattern gradually faded and intermixed over 24 h. The chronological changes in ki67 positivity did not differ between MPBs and broad beams, whereas the CD34-positive area decreased significantly more in MPBs than in broad beams. In addition, it was shown that skin injury after MPB irradiation was significantly milder when compared with broad-beam irradiation at equivalent doses for achieving the same tumor control effect. Bystander effect and tumor vessel injury may be the mechanism contributing to the efficacy of MPBs.


Assuntos
Neoplasias/patologia , Neoplasias/radioterapia , Animais , Antígenos CD34/metabolismo , Efeito Espectador , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/radioterapia , Dermatite/etiologia , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Transplante de Neoplasias , Lesões por Radiação , Radiometria , Silício/química , Pele/efeitos da radiação , Fatores de Tempo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA