Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Neurosci ; 107: 103523, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32634576

RESUMO

Age-related Macular Degeneration (AMD) and Retinitis Pigmentosa (RP) are retinal degenerative disorders that dramatically damage the retina. As there is no therapeutic option for the majority of patients, vision is progressively and irremediably lost. Owing to their unlimited renewal and potency to give rise to any cell type of the human adult body, human pluripotent stem cells (hPSCs) have been extensively studied in recent years to develop more physiologically relevant in vitro cellular models. Such models open new perspectives to investigate the pathological molecular mechanisms of AMD and RP but also in drug screening. Moreover, proof-of-concept of hPSC-derived retinal cell therapy in animal models have led to first clinical trials. This review outlines the recent advances in the use of hPSCs in pathological modeling of retinal degeneration and their use in regenerative medicine. We also address the associated limitations and challenges that need to be overcome when using hPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes/citologia , Retina/citologia , Degeneração Retiniana/terapia , Animais , Diferenciação Celular/fisiologia , Humanos , Degeneração Retiniana/patologia , Transplante de Células-Tronco/métodos
2.
Int J Adv Manuf Technol ; 106(3): 1085-1103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31983799

RESUMO

Establishing how to effectively manufacture cell therapies is an industry-level problem. Decentralised manufacturing is of increasing importance, and its challenges are recognised by healthcare regulators with deviations and comparability issues receiving specific attention from them. This paper is the first to report the deviations and other risks encountered when implementing the expansion of human pluripotent stem cells (hPSCs) in an automated three international site-decentralised manufacturing setting. An experimental demonstrator project expanded a human embryonal carcinoma cell line (2102Ep) at three development sites in France, Germany and the UK using the CompacT SelecT (Sartorius Stedim, Royston, UK) automated cell culture platform. Anticipated variations between sites spanned material input, features of the process itself and production system details including different quality management systems and personnel. Where possible, these were pre-addressed by implementing strategies including standardisation, cell bank mycoplasma testing and specific engineering and process improvements. However, despite such measures, unexpected deviations occurred between sites including software incompatibility and machine/process errors together with uncharacteristic contaminations. Many only became apparent during process proving or during the process run. Further, parameters including growth rate and viability discrepancies could only be determined post-run, preventing 'live' corrective measures. The work confirms the critical nature of approaches usually taken in Good Manufacturing Practice (GMP) manufacturing settings and especially emphasises the requirement for monitoring steps to be included within the production system. Real-time process monitoring coupled with carefully structured quality systems is essential for multiple site working including clarity of decision-making roles. Additionally, an over-reliance upon post-process visual microscopic comparisons has major limitations; it is difficult for non-experts to detect deleterious culture changes and such detection is slow.

3.
Sci Rep ; 9(1): 10646, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337830

RESUMO

Dysfunction or death of retinal pigment epithelial (RPE) cells is involved in some forms of Retinitis Pigmentosa and in age-related macular degeneration (AMD). Since there is no cure for most patients affected by these diseases, the transplantation of RPE cells derived from human pluripotent stem cells (hPSCs) represents an attractive therapeutic alternative. First attempts to transplant hPSC-RPE cells in AMD and Stargardt patients demonstrated the safety and suggested the potential efficacy of this strategy. However, it also highlighted the need to upscale the production of the cells to be grafted in order to treat the millions of potential patients. Automated cell culture systems are necessary to change the scale of cell production. In the present study, we developed a protocol amenable for automation that combines in a sequential manner Nicotinamide, Activin A and CHIR99021 to direct the differentiation of hPSCs into RPE cells. This novel differentiation protocol associated with the use of cell culture robots open new possibilities for the production of large batches of hPSC-RPE cells while maintaining a high cell purity and functionality. Such methodology of cell culture automation could therefore be applied to various differentiation processes in order to generate the material suitable for cell therapy.


Assuntos
Automação/métodos , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células-Tronco Pluripotentes/metabolismo , Epitélio Pigmentado da Retina/citologia , Ativinas/farmacologia , Células Cultivadas , Humanos , Degeneração Macular/terapia , Niacinamida/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Retinose Pigmentar/terapia , Transplante de Células-Tronco/métodos
4.
PLoS Pathog ; 8(3): e1002573, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438805

RESUMO

EBV latent antigen EBNA3C is indispensible for in vitro B-cell immortalization resulting in continuously proliferating lymphoblastoid cell lines (LCLs). EBNA3C was previously shown to target pRb for ubiquitin-proteasome mediated degradation, which facilitates G1 to S transition controlled by the major transcriptional activator E2F1. E2F1 also plays a pivotal role in regulating DNA damage induced apoptosis through both p53-dependent and -independent pathways. In this study, we demonstrate that in response to DNA damage LCLs knocked down for EBNA3C undergo a drastic induction of apoptosis, as a possible consequence of both p53- and E2F1-mediated activities. Importantly, EBNA3C was previously shown to suppress p53-induced apoptosis. Now, we also show that EBNA3C efficiently blocks E2F1-mediated apoptosis, as well as its anti-proliferative effects in a p53-independent manner, in response to DNA damage. The N- and C-terminal domains of EBNA3C form a stable pRb independent complex with the N-terminal DNA-binding region of E2F1 responsible for inducing apoptosis. Mechanistically, we show that EBNA3C represses E2F1 transcriptional activity via blocking its DNA-binding activity at the responsive promoters of p73 and Apaf-1 apoptosis induced genes, and also facilitates E2F1 degradation in an ubiquitin-proteasome dependent fashion. Moreover, in response to DNA damage, E2F1 knockdown LCLs exhibited a significant reduction in apoptosis with higher cell-viability. In the presence of normal mitogenic stimuli the growth rate of LCLs knockdown for E2F1 was markedly impaired; indicating that E2F1 plays a dual role in EBV positive cells and that active engagement of the EBNA3C-E2F1 complex is crucial for inhibition of DNA damage induced E2F1-mediated apoptosis. This study offers novel insights into our current understanding of EBV biology and enhances the potential for development of effective therapies against EBV associated B-cell lymphomas.


Assuntos
Antígenos Virais/metabolismo , Apoptose/genética , Fator de Transcrição E2F1/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Linfócitos/virologia , Antígenos Virais/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA , Fator de Transcrição E2F1/antagonistas & inibidores , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr , Regulação Viral da Expressão Gênica , Células HEK293 , Humanos , Linfócitos/metabolismo , Linfócitos/patologia , Linfoma de Células B/imunologia , Linfoma de Células B/virologia , Osteoblastos/imunologia , Osteoblastos/virologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA