Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 239(2): e14046, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37665159

RESUMO

OBJECTIVE: To understand the mechanisms involved in the response to a low-K+ diet (LK), we investigated the role of the growth factor GDF15 and the ion pump H,K-ATPase type 2 (HKA2) in this process. METHODS: Male mice of different genotypes (WT, GDF15-KO, and HKA2-KO) were fed an LK diet for different periods of time. We analyzed GDF15 levels, metabolic and physiological parameters, and the cellular composition of collecting ducts. RESULTS: Mice fed an LK diet showed a 2-4-fold increase in plasma and urine GDF15 levels. Compared to WT mice, GDF15-KO mice rapidly developed hypokalemia due to impaired renal adaptation. This is related to their 1/ inability to increase the number of type A intercalated cells (AIC) and 2/ absence of upregulation of H,K-ATPase type 2 (HKA2), the two processes responsible for K+ retention. Interestingly, we showed that the GDF15-mediated proliferative effect on AIC was dependent on the ErbB2 receptor and required the presence of HKA2. Finally, renal leakage of K+ induced a reduction in muscle mass in GDF15-KO mice fed LK diet. CONCLUSIONS: In this study, we showed that GDF15 and HKA2 are linked and play a central role in the response to K+ restriction by orchestrating the modification of the cellular composition of the collecting duct.

2.
Am J Physiol Renal Physiol ; 317(2): F435-F443, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188029

RESUMO

We have recently reported that type A intercalated cells of the collecting duct secrete Na+ by a mechanism coupling the basolateral type 1 Na+-K+-2Cl- cotransporter with apical type 2 H+-K+-ATPase (HKA2) functioning under its Na+/K+ exchange mode. The first aim of the present study was to evaluate whether this secretory pathway is a target of atrial natriuretic peptide (ANP). Despite hyperaldosteronemia, metabolic acidosis is not associated with Na+ retention. The second aim of the present study was to evaluate whether ANP-induced stimulation of Na+ secretion by type A intercalated cells might account for mineralocorticoid escape during metabolic acidosis. In Xenopus oocytes expressing HKA2, cGMP, the second messenger of ANP, increased the membrane expression, activity, and Na+-transporting rate of HKA2. Feeding mice with a NH4Cl-enriched diet increased urinary excretion of aldosterone and induced a transient Na+ retention that reversed within 3 days. At that time, expression of ANP mRNA in the collecting duct and urinary excretion of cGMP were increased. Reversion of Na+ retention was prevented by treatment with an inhibitor of ANP receptors and was absent in HKA2-null mice. In conclusion, paracrine stimulation of HKA2 by ANP is responsible for the escape of the Na+-retaining effect of aldosterone during metabolic acidosis.


Assuntos
Equilíbrio Ácido-Base , Acidose/enzimologia , Fator Natriurético Atrial/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Túbulos Renais Coletores/enzimologia , Sódio/urina , Acidose/genética , Acidose/fisiopatologia , Acidose/urina , Adaptação Fisiológica , Aldosterona/urina , Animais , GMP Cíclico/urina , Feminino , ATPase Trocadora de Hidrogênio-Potássio/deficiência , ATPase Trocadora de Hidrogênio-Potássio/genética , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL , Camundongos Knockout , Comunicação Parácrina , Ratos , Transdução de Sinais , Xenopus laevis
3.
J Physiol ; 594(20): 5991-6008, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27412964

RESUMO

KEY POINTS: The cortical collecting duct (CCD) plays an essential role in sodium homeostasis by fine-tuning the amount of sodium that is excreted in the urine. Ex vivo, the microperfused CCD reabsorbs sodium in the absence of lumen-to-bath concentration gradients. In the present study, we show that, in the presence of physiological lumen-to-bath concentration gradients, and in the absence of endocrine, paracrine and neural regulation, the mouse CCD secretes sodium, which represents a paradigm shift. This secretion occurs via the paracellular route, as well as a transcellular pathway that is energized by apical H+ /K+ -ATPase type 2 pumps operating as Na+ /K+ exchangers. The newly identified transcellular secretory pathway represents a physiological target for the regulation of sodium handling and for anti-hypertensive therapeutic agents. ABSTRACT: In vitro microperfusion experiments have demonstrated that cortical collecting ducts (CCDs) reabsorb sodium via principal and type B intercalated cells under sodium-depleted conditions and thereby contribute to sodium and blood pressure homeostasis. However, these experiments were performed in the absence of the transepithelial ion concentration gradients that prevail in vivo and determine paracellular transport. The present study aimed to characterize Na+ , K+ and Cl- fluxes in the mouse CCD in the presence of physiological transepithelial concentration gradients. For this purpose, we combined in vitro measurements of ion fluxes across microperfused CCDs of sodium-depleted mice with the predictions of a mathematical model. When NaCl transport was inhibited in all cells, CCDs secreted Na+ and reabsorbed K+ ; Cl- transport was negligible. Removing inhibitors of type A and B intercalated cells increased Na+ secretion in wild-type (WT) mice but not in H+ /K+ -ATPase type 2 (HKA2) knockout mice. Further inhibition of basolateral NaCl entry via the Na+ -K+ -2Cl- cotransporter in type A intercalated cells reduced Na+ secretion in WT mice to the levels observed in HKA2-/- mice. With no inhibitors, WT mouse CCDs still secreted Na+ and reabsorbed K+ . In vivo, HKA2-/- mice excreted less Na+ than WT mice after switching to a high-salt diet. Taken together, our results indicate that type A intercalated cells secrete Na+ via basolateral Na+ -K+ -2Cl- cotransporters in tandem with apical HKA2 pumps. They also suggest that the CCD can mediate overall Na+ secretion, and that its ability to reabsorb NaCl in vivo depends on the presence of acute regulatory factors.


Assuntos
Epitélio/metabolismo , Túbulos Renais Coletores/metabolismo , Animais , Transporte Biológico/fisiologia , Cloretos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Potássio/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
Am J Physiol Renal Physiol ; 302(9): F1180-7, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22262479

RESUMO

The sodium-independent anion exchanger pendrin is expressed in several tissues including the kidney cortical collecting duct (CCD), where it acts as a chloride/bicarbonate exchanger and has been shown to participate in the regulation of acid-base homeostasis and blood pressure. The renal sympathetic nervous system is known to play a key role in the development of salt-induced hypertension. This study aimed to determine whether pendrin may partly mediate the effects of ß adrenergic receptors (ß-AR) on renal salt handling. We investigated the regulation of pendrin activity by the cAMP/protein kinase A (PKA) signaling pathway, both in vitro in opossum kidney proximal (OKP) cells stably transfected with pendrin cDNA and ex vivo in isolated microperfused CCDs stimulated by isoproterenol, a ß-AR agonist. We found that stimulation of the cAMP/PKA pathway in OKP cells increased the amount of pendrin at the cell surface as well as its transport activity. These effects stemmed from increased exocytosis of pendrin and were associated with its phosphorylation. Furthermore, cAMP effects on the membrane expression and activity of pendrin were abolished by mutating the serine 49 located in the intracellular N-terminal domain of pendrin. Finally, we showed that isoproterenol increases pendrin trafficking to the apical membrane as well as the reabsorption of both Cl(-) and Na(+) in microperfused CCDs. All together, our results strongly suggest that pendrin activation by the cAMP/PKA pathway underlies isoproterenol-induced stimulation of NaCl reabsorption in the kidney collecting duct, a mechanism likely involved in the sodium-retaining effect of ß-adrenergic agonists.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , AMP Cíclico/farmacologia , Túbulos Renais Coletores/metabolismo , Receptores Adrenérgicos beta/metabolismo , Cloreto de Sódio/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Membrana Celular/metabolismo , Células Cultivadas , AMP Cíclico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Isoproterenol/farmacologia , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos , Modelos Animais , Gambás , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transportadores de Sulfato
5.
J Biol Chem ; 283(42): 28020-8, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18678869

RESUMO

Proteinase-activated receptors 2 (PAR2) are expressed in kidney, but their function is mostly unknown. Since PAR2 control ion transport in several epithelia, we searched for an effect on sodium transport in the cortical thick ascending limb of Henle's loop, a nephron segment that avidly reabsorbs NaCl, and for its signaling. Activation of PAR2, by either trypsin or a specific agonist peptide, increased the maximal activity of Na,K-ATPase, its apparent affinity for sodium, the sodium permeability of the paracellular pathway, and the lumen-positive transepithelial voltage, featuring increased NaCl reabsorption. PAR2 activation induced calcium signaling and phosphorylation of ERK1,2. PAR2-induced stimulation of Na,K-ATPase Vmax was fully prevented by inhibition of phospholipase C, of changes in intracellular concentration of calcium, of classical protein kinases C, and of ERK1,2 phosphorylation. PAR2-induced increase in paracellular sodium permeability was mediated by the same signaling cascade. In contrast, increase in the apparent affinity of Na,K-ATPase for sodium, although dependent on phospholipase C, was independent of calcium signaling, was insensitive to inhibitors of classical protein kinases C and of ERK1,2 phosphorylation, but was fully prevented by the nonspecific protein kinase inhibitor staurosporine, as was the increase in transepithelial voltage. In conclusion, PAR2 increases sodium reabsorption in rat thick ascending limb of Henle's loop along both the transcellular and the paracellular pathway. PAR2 effects are mediated in part by a phospholipase C/protein kinase C/ERK1,2 cascade, which increases Na,K-ATPase maximal activity and the paracellular sodium permeability, and by a different phospholipase C-dependent, staurosporine-sensitive cascade that controls the sodium affinity of Na,K-ATPase.


Assuntos
Células Epiteliais/metabolismo , Rim/metabolismo , Receptor PAR-2/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Animais , Sinalização do Cálcio , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Modelos Biológicos , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo
6.
Physiol Genomics ; 27(3): 271-81, 2006 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-16868073

RESUMO

Kidneys are essential for acid-base homeostasis, especially when organisms cope with changes in acid or base dietary intake. Because collecting ducts constitute the final site for regulating urine acid-base balance, we undertook to identify the gene network involved in acid-base transport and regulation in the mouse outer medullary collecting duct (OMCD). For this purpose, we combined kidney functional studies and quantitative analysis of gene expression in OMCDs, by transcriptome and candidate gene approaches, during metabolic acidosis. Furthermore, to better delineate the set of genes concerned with acid-base disturbance, the OMCD transcriptome of acidotic mice was compared with that of both normal mice and mice undergoing an adaptative response through potassium depletion. Metabolic acidosis, achieved through an NH4Cl-supplemented diet for 3 days, not only induced acid secretion but also stimulated the aldosterone and vasopressin systems and triggered cell proliferation. Accordingly, metabolic acidosis increased the expression of genes involved in acid-base transport, sodium transport, water transport, and cell proliferation. In particular, >25 transcripts encoding proteins involved in urine acidification (subunits of H-ATPase, kidney anion exchanger, chloride channel Clcka, carbonic anhydrase-2, aldolase) were co-regulated during acidosis. These transcripts, which cooperate to achieve a similar function and are co-regulated during acidosis, constitute a functional unit that we propose to call a "regulon".


Assuntos
Equilíbrio Ácido-Base/genética , Acidose Tubular Renal/genética , Regulação da Expressão Gênica , Túbulos Renais Coletores/metabolismo , Acidose Tubular Renal/metabolismo , Animais , Antiporters/genética , Anidrase Carbônica II/genética , Canais de Cloreto/genética , Frutose-Bifosfato Aldolase/genética , Perfilação da Expressão Gênica/métodos , Túbulos Renais Coletores/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , ATPases Translocadoras de Prótons/genética , Regulon
7.
Genes Cells ; 8(11): 897-911, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14622141

RESUMO

BACKGROUND: In Drosophila and vertebrates, suppressor of fused (Su(fu)) proteins act as negative regulators of the Gli/Ci transcription factors, which mediate the transcriptional effects of Hh signalling. RESULTS: We sought for novel partners of Su(fu) in fly using the two-hybrid method. Most of the Su(fu) interactors thus identified are (or are likely to be) able to enter the nucleus. We focused on one of these putative partners, dMLF, which resembles vertebrate myelodysplasia/myeloid leukaemia factors 1 and 2. We demonstrate that dMLF binds specifically to Su(fu) in vitro and in vivo. Using a novel anti-dMLF antibody, we showed, that dMLF is a nuclear, chromosome-associated protein. We over-expressed a dMLF transgene in fly using an inducible expression system and showed that dMLF over-expression disrupts normal development, leading to either a lethal phenotype or adult structural defects associated with apoptosis and increased DNA synthesis. Furthermore, the dMLF-induced eye phenotype is enhanced by the loss of Su(fu) function, suggesting a genetic interaction between Su(fu) and dMLF. CONCLUSION: We propose that dSu(fu) and dMLF act together at the transcriptional level to coordinate patterning and proliferation during development.


Assuntos
Apoptose , Núcleo Celular/metabolismo , DNA/biossíntese , Proteínas de Drosophila , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Animais Geneticamente Modificados , Bromodesoxiuridina , Cromossomos/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Olho/citologia , Olho/metabolismo , Morfogênese , Fenótipo , Proteínas/genética , Proteínas Repressoras/genética , Fase S , Transcrição Gênica , Transgenes , Técnicas do Sistema de Duplo-Híbrido , Asas de Animais/citologia , Asas de Animais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA