Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 44(2): 1047-1069, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33983623

RESUMO

Brain aging may be programmed by early-life stress. Aging affects males and females differently, but how perinatal stress (PRS) affects brain aging between sexes is unknown. We showed behavioral and neurobiological sex differences in non-stressed control rats that were strongly reduced or inverted in PRS rats. In particular, PRS decreased risk-taking behavior, spatial memory, exploratory behavior, and fine motor behavior in male aged rats. In contrast, female aged PRS rats displayed only increased risk-taking behavior and reduced exploratory behavior. PRS induced large reductions in the expression of glutamate receptors in the ventral and dorsal hippocampus and prefrontal cortex only in male rats. PRS also reduced the expression of synaptic vesicle-associated proteins, glucocorticoid receptors (GR), and mineralocorticoid receptors (MR) in the ventral hippocampus of aged male rats. In contrast, in female aged rats, PRS enhanced the expression of MRs and brain-derived neurotrophic factor (BDNF) in the ventral hippocampus and the expression of glial fibrillary acidic protein (GFAP) and BDNF in the prefrontal cortex. A common PRS effect in both sexes was a reduction in exploratory behavior and metabotropic glutamate (mGlu2/3) receptors in the ventral hippocampus and prefrontal cortex. A multidimensional analysis revealed that PRS induced a demasculinization profile in glutamate-related proteins in the ventral and dorsal hippocampus and prefrontal cortex, as well as a demasculinization profile of stress markers only in the dorsal hippocampus. In contrast, defeminization was observed only in the ventral hippocampus. Measurements of testosterone and 17-ß-estradiol in the plasma and aromatase in the dorsal hippocampus were consistent with a demasculinizing action of PRS. These findings confirm that the brains of males and females differentially respond to PRS and aging suggesting that females might be more protected against early stress and age-related inflammation and neurodegeneration. Taken together, these results may contribute to understanding how early environmental factors shape vulnerability to brain aging in both sexes and may lay the groundwork for future studies aimed at identifying new treatment strategies to improve the quality of life of older individuals, which is of particular interest given that there is a high growth of aging in populations around the world.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Estresse Psicológico , Animais , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Masculino , Gravidez , Qualidade de Vida , Ratos
2.
Neurobiol Stress ; 13: 100265, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33344718

RESUMO

Early-life stress involved in the programming of stress-related illnesses can have a toxic influence on the functioning of the nigrostriatal motor system during aging. We examined the effects of perinatal stress (PRS) on the neurochemical, electrophysiological, histological, neuroimaging, and behavioral correlates of striatal motor function in adult (4 months of age) and old (21 months of age) male rats. Adult PRS offspring rats showed reduced dopamine (DA) release in the striatum associated with reductions in tyrosine hydroxylase-positive (TH+) cells and DA transporter (DAT) levels, with no loss of striatal dopaminergic terminals as assessed by positron emission tomography analysis with fluorine-18-l-dihydroxyphenylalanine. Striatal levels of DA and its metabolites were increased in PRS rats. In contrast, D2 DA receptor signaling was reduced and A2A adenosine receptor signaling was increased in the striatum of adult PRS rats. This indicated enhanced activity of the indirect pathway of the basal ganglia motor circuit. Adult PRS rats also showed poorer performance in the grip strength test and motor learning tasks. The aged PRS rats also showed a persistent reduction in striatal DA release and defective motor skills in the pasta matrix and ladder rung walking tests. In addition, the old rats showed large increases in the levels of SNAP-25 and synaptophysin, which are synaptic vesicle-related proteins in the striatum, and in the PRS group only, reductions in Syntaxin-1 and Rab3a protein levels were observed. Our findings indicated that the age-dependent threshold for motor dysfunction was lowered in PRS rats. This area of research is underdeveloped, and our study suggests that early-life stress can contribute to an increased understanding of how aging diseases are programmed in early-life.

3.
Addict Biol ; 21(6): 1072-1085, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26011513

RESUMO

Palatable food is a strong activator of the reward circuitry and may cause addictive behavior leading to eating disorders. How early life events and sex interact in shaping hedonic sensitivity to palatable food is largely unknown. We used prenatally restraint stressed (PRS) rats, which show abnormalities in the reward system and anxious/depressive-like behavior. Some of the hallmarks of PRS rats are known to be sex-dependent. We report that PRS enhanced and reduced milk chocolate-induced conditioned place preference in males and females, respectively. Male PRS rats also show increases in plasma dihydrotestosterone (DHT) levels and dopamine (DA) levels in the nucleus accumbens (NAc), and reductions in 5-hydroxytryptamine (5-HT) levels in the NAc and prefrontal cortex (PFC). In male rats, systemic treatment with the DHT-lowering drug finasteride reduced both milk chocolate preference and NAc DA levels. Female PRS rats showed lower plasma estradiol (E2 ) levels and lower DA levels in the NAc, and 5-HT levels in the NAc and PFC. E2 supplementation reversed the reduction in milk chocolate preference and PFC 5-HT levels. In the hypothalamus, PRS increased ERα and ERß estrogen receptor and CARTP (cocaine-and-amphetamine receptor transcript peptide) mRNA levels in males, and 5-HT2C receptor mRNA levels in females. Changes were corrected by treatments with finasteride and E2 , respectively. These new findings show that early life stress has a profound impact on hedonic sensitivity to high-palatable food via long-lasting changes in gonadal hormones. This paves the way to the development of hormonal strategies aimed at correcting abnormalities in the response to natural rewards.


Assuntos
Preferências Alimentares/fisiologia , Recompensa , Estresse Psicológico/psicologia , Análise de Variância , Animais , Monoaminas Biogênicas/metabolismo , Encéfalo/metabolismo , Di-Hidrotestosterona/metabolismo , Dopamina/metabolismo , Feminino , Finasterida/farmacologia , Hipotálamo/metabolismo , Masculino , Córtex Pré-Frontal/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/psicologia , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Restrição Física/psicologia , Serotonina/metabolismo , Fatores Sexuais
4.
Mol Pharmacol ; 84(2): 244-51, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23716620

RESUMO

The use of classic antipsychotic drugs is limited by the occurrence of extrapyramidal motor symptoms, which are caused by dopamine (DA) receptor blockade in the neostriatum. We examined the impact of early-life stress on haloperidol-induced catalepsy using the rat model of prenatal restraint stress (PRS). Adult "PRS rats," i.e., the offspring of mothers exposed to restraint stress during pregnancy, were resistant to catalepsy induced by haloperidol (0.5-5 mg/kg i.p.) or raclopride (2 mg/kg s.c.). Resistance to catalepsy in PRS rats did not depend on reductions in blood or striatal levels, as compared with unstressed control rats. PRS rats also showed a greater behavioral response to the DA receptor agonist, apomorphine, suggesting that PRS causes enduring neuroplastic changes in the basal ganglia motor circuit. To examine the activity of this circuit, we performed a stereological counting of c-Fos(+) neurons in the external and internal globus pallidus, subthalamic nucleus, and ventral motor thalamic nuclei. Remarkably, the number of c-Fos(+) neurons in ventral motor thalamic nuclei was higher in PRS rats than in unstressed controls, both under basal conditions and in response to single or repeated injections with haloperidol. Ventral motor thalamic nuclei contain exclusively excitatory projection neurons that convey the basal ganglia motor programming to the cerebral cortex. Hence, an increased activity of ventral motor thalamic nuclei nicely explains the refractoriness of PRS rats to haloperidol-induced catalepsy. Our data raise the interesting possibility that early-life stress is protective against extrapyramidal motor effects of antipsychotic drugs in the adult life.


Assuntos
Catalepsia/induzido quimicamente , Haloperidol/farmacologia , Estresse Fisiológico/fisiologia , Animais , Antipsicóticos/farmacologia , Apomorfina/farmacologia , Catalepsia/sangue , Catecolaminas/sangue , Catecolaminas/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Agonistas de Dopamina/farmacologia , Feminino , Globo Pálido/efeitos dos fármacos , Globo Pálido/metabolismo , Haloperidol/sangue , Masculino , Exposição Materna , Relações Materno-Fetais/efeitos dos fármacos , Gravidez , Proteínas Proto-Oncogênicas c-fos/metabolismo , Racloprida/farmacologia , Ratos , Receptores Dopaminérgicos/metabolismo , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/metabolismo , Núcleos Ventrais do Tálamo/efeitos dos fármacos , Núcleos Ventrais do Tálamo/metabolismo
5.
Int J Neuropsychopharmacol ; 16(2): 323-38, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22310059

RESUMO

Agomelatine is a novel antidepressant acting as an MT1/MT2 melatonin receptor agonist/5-HT2C serotonin receptor antagonist. Because of its peculiar pharmacological profile, this drug caters the potential to correct the abnormalities of circadian rhythms associated with mood disorders, including abnormalities of the sleep/wake cycle. Here, we examined the effect of chronic agomelatine treatment on sleep architecture and circadian rhythms of motor activity using the rat model of prenatal restraint stress (PRS) as a putative 'aetiological' model of depression. PRS was delivered to the mothers during the last 10 d of pregnancy. The adult progeny ('PRS rats') showed a reduced duration of slow wave sleep, an increased duration of rapid eye movement (REM) sleep, an increased number of REM sleep events and an increase in motor activity before the beginning of the dark phase of the light/dark cycle. In addition, adult PRS rats showed an increased expression of the transcript of the primary response gene, c-Fos, in the hippocampus just prior to the beginning of the dark phase. All these changes were reversed by a chronic oral treatment with agomelatine (2000 ppm in the diet). The effect of agomelatine on sleep was largely attenuated by treatment with the MT1/MT2 melatonin receptor antagonist, S22153, which caused PRS-like sleep disturbances on its own. These data provide the first evidence that agomelatine corrects sleep architecture and restores circadian homeostasis in a preclinical model of depression and supports the value of agomelatine as a novel antidepressant that resynchronizes circadian rhythms under pathological conditions.


Assuntos
Acetamidas/uso terapêutico , Transtornos Cronobiológicos/tratamento farmacológico , Hipnóticos e Sedativos/uso terapêutico , Transtornos dos Movimentos/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Transtornos do Sono-Vigília/tratamento farmacológico , Análise de Variância , Animais , Animais Recém-Nascidos , Nível de Alerta/efeitos dos fármacos , Autorradiografia , Transtornos Cronobiológicos/etiologia , Modelos Animais de Doenças , Esquema de Medicação , Eletroencefalografia , Eletromiografia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Transtornos dos Movimentos/etiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal/patologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Melatonina/antagonistas & inibidores , Restrição Física/efeitos adversos , Transtornos do Sono-Vigília/etiologia , Tiofenos/farmacologia
6.
PLoS One ; 3(5): e2170, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-18478112

RESUMO

Prenatal Restraint Stress (PRS) in rats is a validated model of early stress resulting in permanent behavioral and neurobiological outcomes. Although sexual dimorphism in the effects of PRS has been hypothesized for more than 30 years, few studies in this long period have directly addressed the issue. Our group has uncovered a pronounced gender difference in the effects of PRS (stress delivered to the mothers 3 times per day during the last 10 days of pregnancy) on anxiety, spatial learning, and a series of neurobiological parameters classically associated with hippocampus-dependent behaviors. Adult male rats subjected to PRS ("PRS rats") showed increased anxiety-like behavior in the elevated plus maze (EPM), a reduction in the survival of newborn cells in the dentate gyrus, a reduction in the activity of mGlu1/5 metabotropic glutamate receptors in the ventral hippocampus, and an increase in the levels of brain-derived neurotrophic factor (BDNF) and pro-BDNF in the hippocampus. In contrast, female PRS rats displayed reduced anxiety in the EPM, improved learning in the Morris water maze, an increase in the activity of mGlu1/5 receptors in the ventral and dorsal hippocampus, and no changes in hippocampal neurogenesis or BDNF levels. The direction of the changes in neurogenesis, BDNF levels and mGlu receptor function in PRS animals was not consistent with the behavioral changes, suggesting that PRS perturbs the interdependency of these particular parameters and their relation to hippocampus-dependent behavior. Our data suggest that the epigenetic changes in hippocampal neuroplasticity induced by early environmental challenges are critically sex-dependent and that the behavioral outcome may diverge in males and females.


Assuntos
Imobilização , Efeitos Tardios da Exposição Pré-Natal , Fatores Sexuais , Animais , Animais Recém-Nascidos , Ansiedade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Hidrólise , Aprendizagem , Masculino , Fosfatos de Fosfatidilinositol/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/metabolismo
7.
Psychoneuroendocrinology ; 32(7): 765-76, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17666188

RESUMO

Behavioral adaptation to an anxiogenic environment involves the activity of various interconnected limbic regions, such as the amygdala, hippocampus and prefrontal cortex. Prenatal stress (PS) in rats affects the ability to cope with environmental challenges and alters brain plasticity, leading to long-lasting behavioral and neurobiological alterations. We examined in PS and control animals whether behavioral reactivity was correlated to neuronal activation by assessing Fos protein expression in limbic regions of rats exposed to a low or high anxiogenic environment (the closed and open arms of an elevated plus maze, respectively). A negative correlation was found between behavioral and neuronal activation, with a lower behavioral reactivity and a higher neuronal response observed in rats exposed to the more anxiogenic environment (the open arm) with respect to the less anxiogenic environment (the closed arm). Interestingly, the variation in the neurobehavioral response between the two arms of the maze was less pronounced in rats that had been subjected to PS. This study provides a remarkable example of how long-lasting changes in brain plasticity induced by PS affect the ability of limbic neurons to cope with anxiogenic stimuli of different strength.


Assuntos
Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Sistema Límbico/fisiopatologia , Neurônios/fisiologia , Efeitos Tardios da Exposição Pré-Natal , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiopatologia , Animais , Interpretação Estatística de Dados , Meio Ambiente , Feminino , Genes fos/genética , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Imuno-Histoquímica , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Gravidez , Ratos , Ratos Sprague-Dawley , Restrição Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA