Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Talanta ; 275: 126174, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705021

RESUMO

To analyze a complex sample for endocrine activity, different tests must be performed to clarify androgen/estrogen agonism, antagonism, cytotoxicity, anti-cytotoxicity, and corresponding false-positive reactions. This means a large amount of work. Therefore, a six-fold planar multiplex bioassay concept was developed to evaluate up to the mentioned six endpoints or mechanisms simultaneously in the same sample analysis. Separation of active constituents from interfering matrix via high-performance thin-layer chromatography and effect differentiation via four vertical stripes (of agonists and end-products of the respective enzyme-substrate reaction) applied along each separated sample track were key to success. First, duplex endocrine bioassay versions were established. For the androgen/anti-androgen bioassay applied via piezoelectric spraying, the mean limit of biological detection of bisphenol A was 14 ng/band and its mean half maximal inhibitory concentration IC50 was 116 ng/band. Applied to trace analysis of six migrate samples from food packaging materials, 19 compound zones with agonistic or antagonistic estrogen/androgen activities were detected, with up to seven active compound zones within one migrate. For the first time, the S9 metabolism of endocrine effective compounds was studied on the same surface and revealed partial deactivation. Coupled to high-resolution mass spectrometry, molecular formulas were tentatively assigned to compounds, known to be present in packaging materials or endocrine active or previously unknown. Finally, the detection of cytotoxicity/anti-cytotoxicity and false-positives was integrated into the duplex androgen/anti-androgen bioassay. The resulting six-fold multiplex planar bioassay was evaluated with positive control standards and successfully applied to one migrate sample. The streamlined stripe concept for multiplex planar bioassays made it possible to assign different mechanisms to individual active compounds in a complex sample. The concept is generic and can be transferred to other assays.


Assuntos
Bioensaio , Bioensaio/métodos , Humanos , Disruptores Endócrinos/análise , Disruptores Endócrinos/farmacologia , Reações Falso-Positivas , Fenóis/análise , Fenóis/química , Fenóis/farmacologia , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/química , Androgênios/análise , Androgênios/metabolismo , Antagonistas de Androgênios/análise , Antagonistas de Androgênios/farmacologia
2.
Talanta ; 272: 125746, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447467

RESUMO

High-performance thin-layer chromatography hyphenated with planar multiplex bioassays and high-resolution tandem mass spectrometry contributes to the non-target detection or even identification of active compounds in complex mixtures such as food, feed, cosmetics, commodities, and environmental samples. It can be used to discover previously unknown harmful or active substances in complex samples and to tentatively assign molecular formulas. This method is already faster than the commonly used in vitro assays along with liquid chromatographic separations, but overnight cell cultivation still prevents a planar bioassay from being performed within one day. There is also still potential for optimization in terms of sustainability. To achieve this, the planar bioassay protocols for the detection of androgen-like and estrogen-like compounds were harmonized. The successful minimization of the cell culture volume enabled accelerated cell cultivation, which allowed the bioassay to be performed within one day. This was considered a milestone achieved, as up to 23 samples per plate can now be analyzed from the start of cultivation to the biological endpoint on the same day. Doubling the substrate amount and increasing the pH of the silica gel layer led to a more sensitive and selective bioassay due to the enhanced fluorescence of the formed end-product. The faster and more sustainable bioassay protocol was applied to complex samples such as sunscreen and red wine to detect estrogen-like compounds. The developed method was validated by comparison with a standard method.


Assuntos
Disruptores Endócrinos , Saccharomyces cerevisiae , Disruptores Endócrinos/análise , Estrogênios/análise , Bioensaio/métodos , Misturas Complexas
3.
Anal Bioanal Chem ; 416(3): 701-713, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36877263

RESUMO

For non-target residue analysis of xenoestrogens in food, sophisticated chromatographic-mass spectrometric techniques lack in biological effect detection. Various in vitro assays providing sum values encounter problems when opposing signals are present in a complex sample. Due to physicochemical signal reduction, cytotoxic or antagonistic effect responses, the resulting sum value is falsified. Instead, the demonstrated non-target estrogenic screening with an integrated planar chromatographic separation differentiated opposing signals, detected and prioritized important estrogenic compounds, and directly assigned tentatively the responsible compounds. Sixty pesticides were investigated, ten of which showed estrogenic effects. Exemplarily, half-maximal effective concentrations and 17ß-estradiol equivalents were determined. Estrogenic pesticide responses were confirmed in six tested plant protection products. In food, such as tomato, grape, and wine, several compounds with an estrogenic effect were detected. It showed that rinsing with water was not sufficient to remove selected residues and illustrated that, though not usually performed for tomatoes, peeling would be more appropriate. Though not in the focus, reaction or breakdown products that are estrogenic were detected, underlining the great potential of non-target planar chromatographic bioassay screening for food safety and food control.


Assuntos
Praguicidas , Solanum lycopersicum , Vitis , Poluentes Químicos da Água , Vinho , Saccharomyces cerevisiae , Praguicidas/farmacologia , Praguicidas/análise , Vinho/análise , Estrogênios/análise , Estrona , Cromatografia , Bioensaio , Poluentes Químicos da Água/análise
4.
Antioxidants (Basel) ; 12(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38136240

RESUMO

Commercially available tea extracts for dietary supplements and nutraceuticals are standardized to characteristic components of Camellia sinensis L., such as epigallocatechin gallate (EGCG) and total catechins or polyphenols. However, since most commercial tea extracts are highly concentrated into only one molecule such as EGCG, the comparatively less stable catechin, the oxidative stability of the extract during the 24-month shelf life was questioned. It was hypothesized that the overall oxidative stability is reduced for highly purified/concentrated tea extracts due to the absence of other natural antioxidants stabilizing the complex mixture. Via liquid chromatographic analysis, the individual chromatographic profiles of 30 commercial white, green, and black tea extracts were evaluated and compared regarding oxidative stability and functional properties. The contents of bioactive flavan-3-ols, theaflavins, and methylxanthines differed much from what was claimed by the suppliers. At the end of the product shelf life, most of the commercial green and black tea extracts showed a decrease in the flavan-3-ol content, the main bioactive components of tea. A high EGCG content to the detriment of other possibly stabilizing flavan-3-ols or antioxidants in tea was found to explain the lower oxidative stability of such tea extract products. A natural overall composition of molecular structures was found to be superior to a strong enrichment in just one molecule.

5.
Anal Bioanal Chem ; 415(21): 5193-5204, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37458782

RESUMO

The Arxula yeast bisphenol screen (A-YBS) utilizes the bioluminescent Arxula adeninivorans yeast-based reporter cells for tailored analysis of bisphenols, one of the major endocrine-disrupting compound groups. For the first time, this bioreporter has been applied on the high-performance thin-layer chromatography (HPTLC) adsorbent surface to develop a respective planar bioluminescence bioassay (pA-YBS). The goal was to combine the advantages of HPTLC with a more selective bioassay detection for bisphenols. The performance of this pA-YBS bioluminescence bioassay was demonstrated by calculating the half-maximal effective concentration (EC50) of bisphenols compared to references. The EC50 ranged from 267 pg/band for bisphenol Z and 322 pg/band for bisphenol A (BPA) to > 1 ng/band for other bisphenols (BPC, BPE, BPF, and BPS) and references (17ß-estradiol and 17α-ethinylestradiol). The EC50 value of BPA was three times more sensitive in signal detection than that of 17ß-estradiol. The visual or videodensitometric limit of detection of BPA was about 200 pg/zone. The higher signal intensity and sensitivity for BPA confirmed the tailored bioassay selectivity compared to the existing estrogen screen bioassay. It worked on different types of HPTLC silica gel plates. This HPTLC-UV/Vis/FLD-pA-YBS bioluminescence bioassay method was used to analyze complex mixtures such as six tin can migrates, five thermal papers, and eleven botanicals. The detected estrogenic compound zones in the tin can migrates were successfully verified via the duplex planar yeast antagonist estrogen screen (pYAES) bioassay. The two bisphenols A and S were identified in one out of five thermal papers and confirmed with high-resolution mass spectrometry. No bisphenols were detected in the botanicals investigated via the pA-YBS bioluminescence bioassay. However, the botanicals proved to contain phytoestrogens as detected via the pYAES bioassay, which confirmed the tailored bioassay selectivity. This HPTLC-UV/Vis/FLD-pA-YBS bioluminescence bioassay is suited for cost-efficient analysis of BPA in complex samples, with no need for sterile conditions due to the fast workflow.


Assuntos
Saccharomyces cerevisiae , Estanho , Saccharomyces cerevisiae/química , Estrogênios/análise , Estradiol/análise , Compostos Benzidrílicos/análise , Bioensaio
6.
J Chromatogr A ; 1690: 463775, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36641942

RESUMO

Wine is consumed for thousands of years all over the world, however, its estrogenic potential is still underexplored. A non-target effect-directed screening was developed to reveal estrogen-like and antiestrogen-like compounds in 15 rosé, white and red wine samples of different origin and grape variety. Normal-phase high-performance thin-layer chromatography multi-imaging detection (NP-HPTLC-UV/Vis/FLD) was combined with the planar yeast estrogen screen (pYES) bioassay or the duplex planar yeast antagonist estrogen screen (pYAES) bioassay on the same adsorbent surface. Up to nine estrogen-like compound zones were detected and further characterized via heart-cut elution from the planar bioautogram to orthogonal reversed phase high-performance liquid chromatography (RP-HPLC) coupled with diode array detection (DAD) and high-resolution tandem mass spectrometry (HRMS/MS). Among the tentatively assigned estrogen-like substances, the HRMS/MS signals pointed to hexylresorcinol and diethyl esters from organic acids for the first time. This highlights the method suitability for non-target complex mixture screening and rapid dereplication. The 10D hyphenation NP-HPTLC-UV/Vis/FLD-pYAES-heart cut-RP-HPLC-DAD-HRMS/MS proved to be an efficient and powerful tool for detecting estrogens as well as antiestrogens in the matrix-rich wine samples. High-throughput capability and substantial reduction in the required resources for analysis were demonstrated by this straightforward hyphenation, if compared to bioassay-guided fractionation. The 10D information (via orthogonal chromatographic, versatile spectrometric and duplex endocrine activity data) obtained during a single chromatographic run for many samples in parallel was advantageous for the tentative molecule assignment.


Assuntos
Vinho , Vinho/análise , Saccharomyces cerevisiae , Estrona/análise , Estrogênios/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia em Camada Fina/métodos
7.
JHEP Rep ; 5(2): 100625, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36590323

RESUMO

Background & Aims: Schistosomiasis is a parasitic infection which affects more than 200 million people globally. Schistosome eggs, but not the adult worms, are mainly responsible for schistosomiasis-specific morbidity in the liver. It is unclear if S. mansoni eggs consume host metabolites, and how this compromises the host parenchyma. Methods: Metabolic reprogramming was analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging, liquid chromatography with high-resolution mass spectrometry, metabolite quantification, confocal laser scanning microscopy, live cell imaging, quantitative real-time PCR, western blotting, assessment of DNA damage, and immunohistology in hamster models and functional experiments in human cell lines. Major results were validated in human biopsies. Results: The infection with S. mansoni provokes hepatic exhaustion of neutral lipids and glycogen. Furthermore, the distribution of distinct lipid species and the regulation of rate-limiting metabolic enzymes is disrupted in the liver of S. mansoni infected animals. Notably, eggs mobilize, incorporate, and store host lipids, while the associated metabolic reprogramming causes oxidative stress-induced DNA damage in hepatocytes. Administration of reactive oxygen species scavengers ameliorates these deleterious effects. Conclusions: Our findings indicate that S. mansoni eggs completely reprogram lipid and carbohydrate metabolism via soluble factors, which results in oxidative stress-induced cell damage in the host parenchyma. Impact and implications: The authors demonstrate that soluble egg products of the parasite S. mansoni induce hepatocellular reprogramming, causing metabolic exhaustion and a strong redox imbalance. Notably, eggs mobilize, incorporate, and store host lipids, while the metabolic reprogramming causes oxidative stress-induced DNA damage in hepatocytes, independent of the host's immune response. S. mansoni eggs take advantage of the host environment through metabolic reprogramming of hepatocytes and enterocytes. By inducing DNA damage, this neglected tropical disease might promote hepatocellular damage and thus influence international health efforts.

8.
J Chromatogr A ; 1683: 463522, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36198213

RESUMO

The hyphenation of high-performance thin-layer chromatography to effect-directed assays is a very straightforward way to detect individual bioactive zones, and at the same time, to investigate several samples simultaneously. The combination of the separation technique with adherent human cells applied on the same surface was recently shown to be possible. Since on-surface adherent cell assays are in their infancy, a planar bioluminescent cytotoxicity assay was developed to expand the possibilities. Human embryonic kidney (HEK) 293 or HeLa (cervical carcinoma) cells were chosen because of their fast growth rates and high rates of successful transfection, being suitable for the generation of genetically modified reporter cells. For the first time, HeLa cells were visualized on the wettable reversed phase plate surface using digital microscopy. For the generation of bioluminescent reporter cells, vectors for the expression of three luciferase enzymes of various origins were tested. The genetically modified HEK 293T-CMV-ELuc cells were the best suitable for the new planar cytotoxicity assay due to the faster growth rate, robustness, and stronger bioluminescence signal. The stable expression of luciferase under the control of a strong constitutive promoter allowed the cells to be used for the determination of the cytotoxicity of Saussurea costus root samples obtained from the market and to assess the authenticity of these samples. Any cytotoxic zone was detected as a dark zone inhibiting the cell bioluminescence. Five replicates of the dose-response curve confirmed the good assay performance and the cytotoxicity of a zone, which was assigned to costunolide and dehydrocostus lactone. By this, the proof-of-principle of the new planar bioluminescent cytotoxicity assay, which does not require expensive licensing, was successful.


Assuntos
Medições Luminescentes , Saussurea , Humanos , Células HEK293 , Células HeLa , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes/métodos , Saussurea/química , Saussurea/metabolismo , Saussurea/toxicidade
9.
Toxics ; 10(9)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36136466

RESUMO

The safety evaluation of food contact materials requires excluding mutagenicity and genotoxicity in migrates. Testing the migrates using in vitro bioassays has been proposed to address this challenge. To be fit for that purpose, bioassays must be capable of detecting very low, safety relevant concentrations of DNA-damaging substances. There is currently no bioassay compatible with such qualifications. High-performance thin-layer chromatography (HPTLC), coupled with the planar SOS Umu-C (p-Umu-C) bioassay, was suggested as a promising rapid test (~6 h) to detect the presence of low levels of mutagens/genotoxins in complex mixtures. The current study aimed at incorporating metabolic activation in this assay and testing it with a set of standard mutagens (4-nitroquinoline-N-oxide, aflatoxin B1, mitomycin C, benzo(a)pyrene, N-ethyl nitrourea, 2-nitrofluorene, 7,12-dimethylbenzanthracene, 2-aminoanthracene and methyl methanesulfonate). An effective bioactivation protocol was developed. All tested mutagens could be detected at low concentrations (0.016 to 230 ng/band, according to substances). The calculated limits of biological detection were found to be up to 1400-fold lower than those obtained with the Ames assay. These limits are lower than the values calculated to ensure a negligeable carcinogenic risk of 10-5. They are all compatible with the threshold of toxicological concern for chemicals with alerts for mutagenicity (150 ng/person). They cannot be achieved by any other currently available test procedures. The p-Umu-C bioassay may become instrumental in the genotoxicity testing of complex mixtures such as food packaging, foods, and environmental samples.

10.
Anal Chim Acta ; 1183: 338956, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34627516

RESUMO

For the first time, a human cancer cell line was shown to grow and be functionally active on the particulate porous adsorbent surface of separated sample mixtures. This allowed the novel combination of chromatographic separations with human cells as biological detector. As exemplary screening for cancer treatment drugs, cytotoxic substances were directly discovered in Saussurea costus and ginseng samples using the Cytotox CALUX® osteosarcoma cells (with luciferase expressing reporter gene) as detector. In addition, rosiglitazone and pioglitazone were detected as luminescent zones upon binding to the PPARγ receptor expressed in the respective CALUX cell line that was grown on the surface of the adsorbent. This demonstrates the ability to address receptor-mediated signaling with this method, and opens the perspective to use our novel bioimaging method to identify bioactive molecules targeting a wide range of pathways with toxicological, pharmaceutical and nutraceutical relevance. The new bioimaging directly pointed to individual effective compounds in multi-component mixtures. Furthermore, discovered effective compounds were directly characterized by online elution to high-resolution mass spectrometry and fragmentation.


Assuntos
Cromatografia , Linhagem Celular , Genes Reporter , Humanos , Luciferases , Espectrometria de Massas
11.
J Chromatogr A ; 1628: 461434, 2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32822974

RESUMO

Differing sensitivity is the main obstacle for a direct combination of HPTLC with NMR spectroscopy. A sufficient amount of the isolated compound zone must be provided by HPTLC for subsequent offline NMR detection (HPTLC//NMR). To fill the gap, a straightforward procedure was developed using the same analytical HPTLC system for both bioprofiling and isolation of bioactive zones from multicomponent mixtures. The HPTLC-effect-directed analysis (EDA) revealed several bioactive compounds in five botanical extracts, i.e. Salvia officinalis, Thymus vulgaris and Origanum vulgare, all Lamiaceae, and peels of red and green apples (Jonagored and Granny Smith, respectively), both Rosaceae. A tricky case study was designed to show how to deal with potentially coeluting bioactive structural isomers, e.g., ursolic (UA), oleanolic (OA) and betulinic acids (all C30H48O3), which are most difficult to identify and assign. A multipotent bioactive HPTLC zone showed the same hRF value and mass signal in HPTLCHRMS, though containing the coeluting structural isomers UA and OA. After zone isolation from the HPTLC plate, first the 1H NMR spectrum allowed to distinguish distinct allylic H-18 protons, i.e. 2.20 ppm for UA and 2.85 ppm for OA, and at the same time, to quantify the two isomers by using the PUlse Length-based CONcentration methodology (HPTLC//1H qNMR-PULCON). In case of a partial overlap of the diagnostic signal with that of the matrix, results were corroborated with those obtained by using the 1H deconvoluted or 2D 1H-13C Heteronuclear Single Quantum Coherence spectra. The comparison of the quantitative results showed a good correlation (R2 = 0.9718) between the two orthogonal methods HPTLC-Vis and HPTLC//1H qNMR-PULCON. A sufficient zone isolation from the HPTLC plate (mean isolation rate of 82%) for both UA and OA (0.27 - 4.67 mM) was achieved for HPTLC//qNMR, comparing the isolated bioactive compound zone with the respective zone in the botanical extract via HPTLC-Vis densitometry. The HPTLC-EDA-Vis//1H qNMR-PULCON procedure for bioprofiling and quantification/identification/confirmation of bioactive compounds in botanical extracts is considered as straightforward, eco-friendly (only 16 mL solvent required), simple (NMR calibration used over weeks) and reliable new alternative to the status quo of bioactivity-guided fractionation.


Assuntos
Bioensaio/métodos , Espectroscopia de Ressonância Magnética , Compostos Fitoquímicos/análise , Fracionamento Químico , Cromatografia em Camada Fina , Lamiaceae/química , Ácido Oleanólico/análise , Ácido Oleanólico/química , Triterpenos Pentacíclicos , Extratos Vegetais/química , Padrões de Referência , Triterpenos/análise , Triterpenos/química , Ácido Betulínico , Ácido Ursólico
12.
Lab Invest ; 100(11): 1411-1424, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32612285

RESUMO

Clinical studies demonstrated that nonalcoholic steatohepatitis is associated with liver-related outcomes in chronic hepatitis B. Furthermore, primary biliary fibrosis and biliary atresia occurred in patients with HBV infection. Interestingly, hepatitis B virus surface protein (HBs) transgenic mice spontaneously develop hepatic steatosis. Our aim is to investigate the effect of Abcb4 knockout-induced cholestasis on liver steatosis in HBs transgenic mice. Hybrids of HBs transgenic and Abcb4-/- mice were bred on the BALB/c genetic background. Lipid synthesis, storage, and catabolism as well as proteins and genes that control lipid metabolism were analyzed using HPTLC, qPCR, western blot, electrophoretic mobility shift assay (EMSA), lipid staining, and immunohistochemistry. Hepatic neutral lipid depots were increased in HBs transgenic mice and remarkably reduced in Abcb4-/- and HBs/Abcb4-/- mice. Similarly, HPTLC-based quantification analyses of total hepatic lipid extracts revealed a significant reduction in the amount of triacylglycerols (TAG), while the amount of free fatty acids (FFA) was increased in Abcb4-/- and HBs/Abcb4-/- in comparison to wild-type and HBs mice. PLIN2, a lipid droplet-associated protein, was less expressed in Abcb4-/- and HBs/Abcb4-/-. The expression of genes-encoding proteins involved in TAG synthesis and de novo lipogenesis (Agpat1, Gpat1, Mgat1, Dgat1, Dgat2, Fasn, Hmgcs1, Acc1, Srebp1-c, and Pparγ) was suppressed, and AMPK and CREB were activated in Abcb4-/- and HBs/Abcb4-/- compared to wild-type and HBs mice. Simulating cholestatic conditions in cell culture resulted in AMPK and CREB activation while FASN and PLIN2 were reduced. A concurrent inhibition of AMPK signaling revealed normal expression level of FASN and PLIN2, suggesting that activation of AMPK-CREB signaling regulates hepatic lipid metabolism, i.e. synthesis and storage, under cholestatic condition. In conclusions, in vivo and mechanistic in vitro data suggest that cholestasis reduces hepatic lipid storage via AMPK and CREB signaling. The results of the current study could be the basis for novel therapeutic strategies as NASH is a crucial factor that can aggravate chronic liver diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Colestase/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Colestase/complicações , Fígado Gorduroso/complicações , Feminino , Células Hep G2 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout , Perilipina-2/metabolismo , Triglicerídeos/metabolismo , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
13.
Anal Chim Acta ; 1125: 288-298, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32674775

RESUMO

Xenoestrogens exert antiandrogenic effects on the human androgen receptor. In the analytical field, such antagonists block the detection of testosterone and falsify results obtained by sum parameter assays. Currently, such agonistic versus antagonistic effects are not differentiated in complex mixtures. Oppositely acting hormonal effects present in products of everyday use can only be differentiated after tedious fractionation and isolation of the individual compounds along with subjection of each fraction/compound to the status quo bioassay testing. However, such long-lasting procedures are not suited for routine. Hence, we developed a fast bioanalytical tool that figures out agonists versus antagonists directly in complex mixtures. Exemplarily, 8 cosmetics and 15 thermal papers were analyzed. The determined antagonistic potentials of active compounds found were comparable to the ones of known antagonists (in reference shown for bisphenol A, 4-n-nonylphenol and four parabens). Relevant biological/chromatographic parameters such as cell viability, culture conditions, dose response curves, limits of biological detection/quantification and working range (shown for testosterone, dihydrotestosterone, nandrolone and trenbolone) were investigated to obtain the best sensitivity of the biological detection. The developed and validated method was newly termed reversed phase high-performance thin-layer chromatography planar yeast ant-/agonistic androgen screen (RP-HPTLC-pYAAS bioassay). Results were also compared with the RP-HPTLC-Aliivibrio fischeri bioassay (applied on RP plates for the first time). As proof-of-concept, the transfer to another bioassay (RP-HPTLC-pYES) was successfully demonstrated, analogously termed RP-HPTLC-pYAES bioassay detecting anti-/estrogens (exemplarily shown for evaluation of 4 pharmaceuticals used in breast cancer treatment). The new imaging concept provides (1) detection and differentiation of individual agonistic versus antagonistic effects in the bioprofiles, (2) bioanalytical quantification of their activity potential by scanning densitometry and (3) characterization of unknown bioactive compound zones by hyphenation to high-resolution mass spectrometry. Depending on the hormonal bioassay, 15 samples were analyzed in parallel within 5 h or 6 h (calculated as 20 or 24 min per sample). For the first time, piezoelectric spraying of the yeast cells was successfully demonstrated for the planar yeast-based bioassays.


Assuntos
Antagonistas de Receptores de Andrógenos/análise , Androgênios/análise , Bioensaio/métodos , Cosméticos/análise , Disruptores Endócrinos/análise , Aliivibrio fischeri/efeitos dos fármacos , Antibacterianos/análise , Compostos Benzidrílicos/análise , Cromatografia de Fase Reversa/métodos , Cromatografia em Camada Fina/métodos , Corantes Fluorescentes/química , Galactosídeos/química , Humanos , Himecromona/análogos & derivados , Himecromona/química , Limite de Detecção , Papel , Fenóis/análise , Estudo de Prova de Conceito , Receptores Androgênicos/genética , Saccharomyces cerevisiae/genética , beta-Galactosidase/química
14.
J Chromatogr A ; 1572: 145-151, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30166113

RESUMO

On-surface reactions were introduced as a new strategy for rapid structure elucidation. This strategy is illustrated by the miniaturized synthesis-guided identification of two new degradation products (impurities) occurring in a pharmaceutical formulation of the anti-cancer drug ifosfamide, especially in the presence of urea. Synthesis on the silica gel surface bypassed the need for solvents, as the large nm-porous surface favoured a fast conversion of the reaction partners. For the on-surface synthesis of the impurities, the respective reagents were accurately and automatedly applied in the nanomole scale on a high-performance thin-layer chromatography (HPTLC) silica gel plate. After a fast reaction, the workup of the reaction mixture was performed by development of the HPTLC plate followed by online high-resolution mass spectrometry. As proof of concept and for benchmarking, a reaction mixture obtained from conventional preparative synthesis in a round-bottom flask was analysed in parallel as well as different formulations. The use of adsorbents as inert layer turned out to be highly efficient for a rapid generation and confirmation of impurities, as the synthesis on the HPTLC layer revealed them within 10 min. Image evaluation was simply performed by videodensitometry. The advantageous combination of all steps on one HPTLC plate and its resulting efficiency made surface synthesis on chromatographic phases an optimal tool for signal highlighting in mass spectrometry, and thus for the assignment of impurities in drugs. The chemistry process scale was miniaturized down to the µg-level per synthesis (in total 30-60 µg chemicals/reaction), setting a new state-of-the-art standard. All material savings clearly contribute to green chemistry, and this strategy substantially reduces the consumption of chemicals and greatly enhances the analytical efficiency, when adapted by scientists for the quality control of any other chemical product. The combination of synthesis, workup and detection in a miniaturized process, contributes to optimized workflows in a lean laboratory.


Assuntos
Cromatografia em Camada Fina/métodos , Contaminação de Medicamentos , Ifosfamida/química , Aminas/química , Densitometria , Composição de Medicamentos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Ureia/química
15.
J Chromatogr A ; 1422: 310-317, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26499972

RESUMO

Two tansy (Tanacetum vulgare L.) essential oils were obtained by steam distillation of the capitula with subsequent liquid-liquid extraction (oil 1) or with use of an auxiliary phase for the trapping of the steam components (oil 2). These oils were investigated against Bacillus subtilis F1276, B. subtilis spizizenii (DSM 618), Xanthomonas euvesicatoria, Pseudomonas syringae pv. maculicola, Ralstonia solanacearum strain GMI1000 and Aliivibrio fischeri, using the coupling of high-performance thin-layer chromatography to direct bioautography (HPTLC-DB). Using this method with the potato and tomato pathogen R. solanacearum is shown for the first time. Due to the advanced extraction process, oil 2 was richer in components and provided more inhibition zones. The main bioactive components were identified by scanning HPTLC-Direct Analysis in Real Time mass spectrometry (HPTLC-DART-MS) and solid-phase microextraction gas chromatography electron impact MS (SPME-GC-EI-MS) as cis- and trans-chrysanthenol as well as trans-chrysanthenyl acetate. cis-Chrysanthenol exhibited antibacterial effects against all tested bacteria, whereas trans-chrysanthenol inhibited B. subtilis, R. solanacearum and A. fischeri. trans-Chrysanthenyl acetate was an inhibitor for X. euvesicatoria, R. solanacearum and A. fischeri. Although HPTLC-DART-MS resulted in a comparable fragmentation, the ionization characteristics and the recorded mass spectra clearly showed that DART is a softer ionization technique than EI. It is also more affected by ambient conditions and thus prone to additional oxidation products.


Assuntos
Cromatografia em Camada Fina , Espectrometria de Massas , Óleos Voláteis/química , Extratos Vegetais/química , Tanacetum/química , Antibacterianos/análise , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Compostos Bicíclicos com Pontes/isolamento & purificação , Compostos Bicíclicos com Pontes/farmacologia , Monoterpenos/isolamento & purificação , Monoterpenos/farmacologia
16.
Anal Chem ; 87(21): 11098-104, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26447851

RESUMO

A direct bioautography has been used for the simultaneous determination of four estrogens [estrone (E1), 17ß-estradiol (E2), estriol (E3), and 17α-ethinylestradiol (EE2)] and two xenoestrogens [bisphenol A (BPA) and 4-n-nonyl-phenol (NP)] in surface water and wastewater samples from a sewage treatment plant. After either direct application or a liquid-liquid extraction of the water samples, the qualitative and quantitative detection of estrogen-effective compounds was performed with a planar yeast estrogen screen. The limits of detection were different for each compound, due to the specific receptor binding of individual (xeno)estrogens (1 ng/L to 15 µg/L). The mean recovery rate for all six substances at this ultratrace level was 88% [mean percent relative standard deviation (%RSD) of 17%, n = 3]. Over the whole procedure, precisions of three estrogens discovered in a wastewater sample were below 17%, n = 3. The identification of the detected bioactive compounds was performed by high-performance thin-layer chromatography-electrospray ionization mass spectrometry (HPTLC-ESI-MS) via the elution-head-based TLC-MS Interface. Whereas the estrogens E1 and E2 could always be detected in the influent of the treatment plant, E3 was detected occasionally. The concentrations of E1 and E2 ranged from 3 to 50 ng/L, and for E3 from 98 to 210 ng/L. EE2, BPA, and NP could not be detected at the given LOD. In every second surface water sample, E1 and E2 were detected, but not E3, EE2, BPA, and NP.


Assuntos
Disruptores Endócrinos/análise , Poluentes Químicos da Água/análise , Cromatografia em Camada Fina , Limite de Detecção , Espectrometria de Massas , Reprodutibilidade dos Testes
17.
J Chromatogr A ; 1360: 288-95, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25145566

RESUMO

The traditional direct bioautography workflow was substantially altered to yield narrow, sharp-bounded effective zones. For the first time, microorganisms quantitatively detected the single effective compounds in complex samples, separated in parallel on a planar chromatogram. This novel effect-directed workflow was demonstrated and optimized for the discovery of endocrine disrupting compounds (EDCs) reacting with the human estrogen receptor down to the femtogram-per-zone range, like 250fg/zone for 17ß-estradiol (E2). For application volumes of up to 0.5mL, estrogen-effective compounds could directly be detected in complex samples at the ultratrace level (ng/kg-range). Sharp-bounded, estrogen-effective zones discovered were further characterized by direct elution into the mass spectrometer. HPTLC-ESI-MS mass spectra of (xeno)estrogens were shown for the first time. Owed to the substantially improved zone resolution, compound assignment was reliable and a comparison of the receptor affinities was conducted for six (xeno)estrogens. Also, long-term cell cultivation of the genetically modified yeast was demonstrated on the HPTLC plate. The optimized HPTLC-pYES workflow was proven for real food samples, exemplarily shown for beer. The general applicability of generating sharp-bounded zones was successfully proven by transfer of the fundamentally improved workflow to the Bacillus subtilis bioassay used for discovery of antibiotics in plant extracts. This new era of quantitative direct bioautography in combination with mass spectrometry will accelerate the scientific understanding in a wide application field via the streamlined access to fast and reliable information on effective components in complex samples.


Assuntos
Bioensaio/métodos , Cromatografia Líquida de Alta Pressão/métodos , Estrogênios/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Bioensaio/instrumentação , Cromatografia Líquida de Alta Pressão/instrumentação , Disruptores Endócrinos/análise , Humanos , Saccharomyces cerevisiae/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação
18.
Anal Chem ; 86(16): 8289-95, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25069056

RESUMO

Complex samples like food contain thousands of single compounds. In the past, only known target compounds were looked for; however, most bioactive compounds in food are unknown. On the contrary, nontarget analyses face the challenge of determining the thousand peaks' identities, but it remains largely unclear which peaks are bioactive. Here, we show a novel effect-directed food profiling, as food and food supplements can be unknowingly physiologically active. By the combination of planar chromatography, using water-wettable reversed phase high-performance thin-layer chromatography (HPTLC RP18 W) plates, with detection by specific microorganisms, endocrine compounds in food were quantitatively detected as sharp-bounded zones and further characterized by mass spectrometry. This analytical workflow allowed frequent food intakes to be identified as risky with regard to estrogen-effective compounds, in discussion for their potential involvement in foodborne pathogenesis and for use in personalized health care. Using this accelerated workflow with its comprehensive detection potential, unknown endocrine compounds can be discovered. Exemplarily, the discovery of up to six endocrine disrupting compounds was shown in seven propolis samples and in four spices. For example, microorganisms quantitatively detected an estrogen-effective compound in the range of 0.07-0.24% in seven propolis samples, which was assigned to be caffeic acid phenethyl ester by mass spectrometry. This streamlined nontarget analysis detected modes of action, followed by targeted characterization of newly discovered effective compounds. Also, drug discovery or analysis of traditional medicines may profit from this effect-directed profiling of complex samples.


Assuntos
Bioensaio/instrumentação , Suplementos Nutricionais/análise , Disruptores Endócrinos/análise , Estrogênios/análise , Análise de Alimentos/instrumentação , Aliivibrio fischeri/fisiologia , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/instrumentação , Cromatografia em Camada Fina/instrumentação , Desenho de Equipamento , Humanos , Espectrometria de Massas/instrumentação , Própole/química , Saccharomyces cerevisiae/fisiologia , Especiarias/análise
19.
Eur J Mass Spectrom (Chichester) ; 20(2): 199-205, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24895781

RESUMO

Chemical compositions of volatile and semi-volatile components in green and fermented leaves of Bergenia crassifolia L. were studied. Leaf components were identified using gas chromatography with low resolution mass spectrometry and direct analysis in real time (DART) high resolution mass spectrometry with an ID-CUBE ion source. Phytol, nerolidol, geraniol, linalool, alpha-bisabolol, alpha-bisabololoxide B, alpha-cadinol, delta-cadinene, alpha-terpineol and several other marker compounds of special interest were defined, for which the process of fermentation significantly changed their content in the leaves. Low resolution El GC-MS and ID-CUBE DART-HRMS were found to be complementary methods, as they provide different information, helpful to increase the confidence of identification.


Assuntos
Algoritmos , Análise de Alimentos/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Folhas de Planta/química , Saxifragaceae/química , Compostos Orgânicos Voláteis/análise , Cor , Sistemas Computacionais , Fermentação
20.
J AOAC Int ; 91(5): 1237-43, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18980146

RESUMO

A simple strategy for identification and quantification of lubricant additives in mineral oil was demonstrated by high-performance thin-layer chromatography with UV absorption and fluorescence detection using various coupling options, e.g., with attenuated total reflectance infrared (ATR-IR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and direct analysis in real-time mass spectrometry (DART-MS). For the additives zinc bis(O,O'-diisobutyl dithiophosphate), zinc bis(O,O'-didodecyl dithiophosphate), and Anglamol 99, 2 chromatographic systems were developed, i.e., a reversed-phase (RP) system on RP2 plates using an acetonitrile-based mobile phase and a normal-phase system on silica gel 60 plates using a toluene-based gradient. Densitometry was performed by absorption measurement at 220 nm. Repeatabilities (relative standard deviation, n = 6) between 2.2 and 5.5% and correlation coefficients >0.9973 were highly satisfactory for the analysis of these additives in the mineral oil. Primuline reagent was used to improve the detection limit of the lipophilic additives by a factor of 2, followed by fluorescence measurement at UV 366/>400 nm. For rapid identification by ATR-IR and FTIR, the respective additive zones on the plate were online extracted by an interface called ChromeXtract, concentrated, and directly applied for measurements in the wave number range of 4000-400 cm(-1). Identification was confirmed by online ESI-MS within a minute using ChromeXtract and by DART-MS within seconds.


Assuntos
Lubrificantes/análise , Óleo Mineral/análise , Cromatografia em Camada Fina , Indicadores e Reagentes , Espectrometria de Massas , Padrões de Referência , Soluções , Espectrometria de Fluorescência , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA