Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 112(45): 14103-7, 2008 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-18950086

RESUMO

Sodium deoxycholate in water dissociates into sodium cation and deoxycholate anion in the aqueous phase, and then, the latter anions partially hydrolyze to form deionized deoxycholic acids. The acids move into the benzene phase, when liquid benzene is placed upon the aqueous phase, and finally the partition equilibrium is reached. The above processes were traced by pH change in the aqueous phase by a pH meter or the change in [OH-] with time, from which the rate for transfer of neutralized acid to the organic phase was analyzed. From the trace, the rate constants for hydrolysis of acid anion ( kf), neutralization of acid ( kb), transfer of neutralized acid from the aqueous phase to the organic phase ( kin*), and its back-transfer from the organic phase to the aqueous phase ( kut*) were evaluated; kf = 2.18 x 10 (-4) mol (-1) dm (3) min (-1), kb = 1.24 x 10 (5) mol (-1) dm (3) min (-1), kin* = 4.06 x 10 (-1) min (-1) cm (-2), and kout*) = 8.00 x 10 (-2) min (-1) cm (-2). The above values are supported by the partition constant of deoxycholic acid between the benzene phase and the aqueous phase.


Assuntos
Benzeno/química , Ácido Desoxicólico/química , Água/química , Ácidos e Sais Biliares/química , Hidrólise , Íons/química , Cinética , Modelos Químicos
2.
Langmuir ; 23(14): 7505-9, 2007 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-17547433

RESUMO

Solubilization of benzene, toluene, ethylbenzene, n-propylbenzene, n-butylbenzene, and n-pentylbenzene into the micelles of octaethylene glycol monotetradecyl ether (C(14)E(8)) was studied, where equilibrium concentrations of all the solubilizates were determined spectrophotometrically at 298.2, 303.2, and 308.2 K. The concentration of the above solubilizates except benzene remained constant below the critical micelle concentration (cmc) and increased linearly with an increase in C(14)E(8) concentration above the cmc, whereas benzene concentration was found to remain constant over the whole concentration range of C(14)E(8). The Gibbs energy change (DeltaG(0)) for their solubilization was evaluated by the partitioning of the solubilizates between the aqueous phase and the micellar phase because of the large aggregation number of the C(14)E(8) micelle. Furthermore, enthalpy and entropy changes for their solubilization were evaluated from the temperature dependence of the DeltaG(0) values. From these thermodynamical parameters and the change in absorption spectra of the solubilizates due to their incorporation into the micelles, the solubilization site was found to move into the inner core of the micelle with increasing alkyl chain length of the solubilizates.


Assuntos
Derivados de Benzeno/química , Detergentes/química , Polietilenoglicóis/química , Alquilação , Carbono/química , Micelas , Solubilidade , Espectrofotometria Ultravioleta , Termodinâmica
3.
Langmuir ; 21(16): 7308-10, 2005 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-16042459

RESUMO

Evaporation rates were determined for water-ethylene glycol liquid mixtures with different mole fractions, where the evaporation rate expressed as mg min(-1)/area was used because of the presence of two kinds of molecular species. The rate increased with increasing temperature and decreased with increasing mole fraction of ethylene glycol, almost obeying ideal mixing of the two components, although a small positive deviation was observed over the mole fraction from 0 to 0.5 of ethylene glycol at higher temperatures. The activation energy of evaporation was determined from the temperature dependence of the evaporation rate, where the energy was an apparent one because the composition of evaporated species was not determined. The activation energy increased with decreasing temperature and with increasing mole fraction of ethylene glycol, where the energy obeyed the ideal mixing at lower temperatures while it positively deviated at higher temperatures. The evaporation rates were examined by surface tension of the liquid mixture, but any definite relation between them was not found. Both the evaporation rate and the activation energy were found to be determined mainly by the mole fraction in the surface layer from which the evaporation takes place. Finally, the new concept of surface excess was presented, where the surfactant molecules were concentrated and formed a bimolecular layer at a certain distance beneath the air/solution interface.


Assuntos
Química/métodos , Etilenoglicol/química , Água/química , Soluções , Propriedades de Superfície , Tensão Superficial , Tensoativos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA