Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 14(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35405984

RESUMO

Vitamin D regulates the master iron hormone hepcidin, and iron in turn alters vitamin D metabolism. Although vitamin D and iron deficiency are highly prevalent globally, little is known about their interactions in Africa. To evaluate associations between vitamin D and iron status we measured markers of iron status, inflammation, malaria parasitemia, and 25-hydroxyvitamin D (25(OH)D) concentrations in 4509 children aged 0.3 months to 8 years living in Kenya, Uganda, Burkina Faso, The Gambia, and South Africa. Prevalence of iron deficiency was 35.1%, and prevalence of vitamin D deficiency was 0.6% and 7.8% as defined by 25(OH)D concentrations of <30 nmol/L and <50 nmol/L, respectively. Children with 25(OH)D concentrations of <50 nmol/L had a 98% increased risk of iron deficiency (OR 1.98 [95% CI 1.52, 2.58]) compared to those with 25(OH)D concentrations >75 nmol/L. 25(OH)D concentrations variably influenced individual markers of iron status. Inflammation interacted with 25(OH)D concentrations to predict ferritin levels. The link between vitamin D and iron status should be considered in strategies to manage these nutrient deficiencies in African children.


Assuntos
Deficiências de Ferro , Deficiência de Vitamina D , Biomarcadores , Criança , Humanos , Inflamação/epidemiologia , Ferro , Prevalência , África do Sul , Vitamina D , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/epidemiologia , Vitaminas
2.
Nat Med ; 27(4): 653-658, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33619371

RESUMO

Malaria and iron deficiency (ID) are common and interrelated public health problems in African children. Observational data suggest that interrupting malaria transmission reduces the prevalence of ID1. To test the hypothesis that malaria might cause ID, we used sickle cell trait (HbAS, rs334 ), a genetic variant that confers specific protection against malaria2, as an instrumental variable in Mendelian randomization analyses. HbAS was associated with a 30% reduction in ID among children living in malaria-endemic countries in Africa (n = 7,453), but not among individuals living in malaria-free areas (n = 3,818). Genetically predicted malaria risk was associated with an odds ratio of 2.65 for ID per unit increase in the log incidence rate of malaria. This suggests that an intervention that halves the risk of malaria episodes would reduce the prevalence of ID in African children by 49%.


Assuntos
Deficiências de Ferro , Malária/complicações , Absorção Fisiológica , Adolescente , África , Criança , Pré-Escolar , Feminino , Geografia , Hepcidinas/metabolismo , Humanos , Lactente , Masculino , Análise da Randomização Mendeliana , Traço Falciforme/complicações
3.
JHEP Rep ; 2(6): 100154, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32995714

RESUMO

BACKGROUND & AIMS: Iron reduction by venesection has been the cornerstone of treatment for haemochromatosis for decades, and its reported health benefits are many. Repeated phlebotomy can lead to a compensatory increase in intestinal iron absorption, reducing intestinal iron availability. Given that most gut bacteria are highly dependent on iron for survival, we postulated that, by reducing gut iron levels, venesection could alter the gut microbiota. METHODS: Clinical parameters, faecal bacterial composition and metabolomes were assessed before and during treatment in a group of patients with haemochromatosis undergoing iron reduction therapy. RESULTS: Systemic iron reduction was associated with an alteration of the gut microbiome, with changes evident in those who experienced reduced faecal iron availability with venesection. For example, levels of Faecalibacterium prausnitzii, a bacterium associated with improved colonic health, were increased in response to faecal iron reduction. Similarly, metabolomic changes were seen in association with reduced faecal iron levels. CONCLUSION: These findings highlight a significant shift in the gut microbiome of patients who experience reduced colonic iron during venesection. Targeted depletion of faecal iron could represent a novel therapy for metabolic and inflammatory diseases, meriting further investigation. LAY SUMMARY: Iron depletion by repeated venesection is the mainstay of treatment for haemochromatosis, an iron-overload disorder. Venesection has been associated with several health benefits, including improvements in liver function tests, reversal of liver scarring, and reduced risk of liver cancer. During iron depletion, iron absorption from the gastrointestinal (GI) tract increases to compensate for iron lost with treatment. Iron availability is limited in the GI tract and is crucial to the growth and function of many gut bacteria. In this study we show that reduced iron availability in the colon following venesection treatment leads to a change in the composition of the gut bacteria, a finding that, to date, has not been studied in patients with haemochromatosis.

4.
BMC Med ; 18(1): 31, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32102669

RESUMO

BACKGROUND: Iron deficiency (ID) is a major public health burden in African children and accurate prevalence estimates are important for effective nutritional interventions. However, ID may be incorrectly estimated in Africa because most measures of iron status are altered by inflammation and infections such as malaria. Through the current study, we have assessed different approaches to the prediction of iron status and estimated the burden of ID in African children. METHODS: We assayed iron and inflammatory biomarkers in 4853 children aged 0-8 years from Kenya, Uganda, Burkina Faso, South Africa, and The Gambia. We described iron status and its relationship with age, sex, inflammation, and malaria parasitemia. We defined ID using the WHO guideline (ferritin < 12 µg/L or < 30 µg/L in the presence of inflammation in children < 5 years old or < 15 µg/L in children ≥ 5 years old). We compared this with a recently proposed gold standard, which uses regression-correction for ferritin levels based on the relationship between ferritin levels, inflammatory markers, and malaria. We further investigated the utility of other iron biomarkers in predicting ID using the inflammation and malaria regression-corrected estimate as a gold standard. RESULTS: The prevalence of ID was highest at 1 year of age and in male infants. Inflammation and malaria parasitemia were associated with all iron biomarkers, although transferrin saturation was least affected. Overall prevalence of WHO-defined ID was 34% compared to 52% using the inflammation and malaria regression-corrected estimate. This unidentified burden of ID increased with age and was highest in countries with high prevalence of inflammation and malaria, where up to a quarter of iron-deficient children were misclassified as iron replete. Transferrin saturation < 11% most closely predicted the prevalence of ID according to the regression-correction gold standard. CONCLUSIONS: The prevalence of ID is underestimated in African children when defined using the WHO guidelines, especially in malaria-endemic populations, and the use of transferrin saturation may provide a more accurate approach. Further research is needed to identify the most accurate measures for determining the prevalence of ID in sub-Saharan Africa.


Assuntos
Anemia Ferropriva/epidemiologia , África , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
5.
Nat Metab ; 1(5): 519-531, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31276102

RESUMO

Iron is critical for life but toxic in excess because of iron-catalysed formation of pro-oxidants that cause tissue damage in a range of disorders. The Nrf2 transcription factor orchestrates cell-intrinsic protective antioxidant responses, and the peptide hormone hepcidin maintains systemic iron homeostasis, but is pathophysiologically decreased in haemochromatosis and beta-thalassaemia. Here, we show that Nrf2 is activated by iron-induced, mitochondria-derived pro-oxidants and drives Bmp6 expression in liver sinusoid endothelial cells, which in turn increases hepcidin synthesis by neighbouring hepatocytes. In Nrf2 knockout mice, the Bmp6-hepcidin response to oral and parenteral iron is impaired and iron accumulation and hepatic damage are increased. Pharmacological activation of Nrf2 stimulates the Bmp6-hepcidin axis, improving iron homeostasis in haemochromatosis and counteracting the inhibition of Bmp6 by erythroferrone in beta-thalassaemia. We propose that Nrf2 links cellular sensing of excess toxic iron to control of systemic iron homeostasis and antioxidant responses, and may be a therapeutic target for iron-associated disorders.


Assuntos
Proteína Morfogenética Óssea 6/fisiologia , Hepcidinas/fisiologia , Homeostase/fisiologia , Ferro/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Talassemia beta/fisiopatologia , Humanos
6.
Clin Infect Dis ; 68(11): 1807-1814, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30219845

RESUMO

BACKGROUND: It remains unclear whether improving iron status increases malaria risk, and few studies have looked at the effect of host iron status on subsequent malaria infection. We therefore aimed to determine whether a child's iron status influences their subsequent risk of malaria infection in sub-Saharan Africa. METHODS: We assayed iron and inflammatory biomarkers from community-based cohorts of 1309 Kenyan and 1374 Ugandan children aged 0-7 years and conducted prospective surveillance for episodes of malaria. Poisson regression models were fitted to determine the effect of iron status on the incidence rate ratio (IRR) of malaria using longitudinal data covering a period of 6 months. Models were adjusted for age, sex, parasitemia, inflammation, and study site. RESULTS: At baseline, the prevalence of iron deficiency (ID) was 36.9% and 34.6% in Kenyan and Ugandan children, respectively. ID anemia (IDA) affected 23.6% of Kenyan and 17.6% of Ugandan children. Malaria risk was lower in children with ID (IRR, 0.7; 95% confidence interval [CI], 0.6, 0.8; P < .001) and IDA (IRR, 0.7; 95% CI, 0.6, 0.9; P = .006). Low transferrin saturation (<10%) was similarly associated with lower malaria risk (IRR, 0.8; 95% CI, 0.6, 0.9; P = .016). However, variation in hepcidin, soluble transferrin receptors (sTfR), and hemoglobin/anemia was not associated with altered malaria risk. CONCLUSIONS: ID appears to protect against malaria infection in African children when defined using ferritin and transferrin saturation, but not when defined by hepcidin, sTfR, or hemoglobin. Additional research is required to determine causality. CLINICAL TRIALS REGISTRATION: ISRCTN32849447.


Assuntos
Ferro/sangue , Malária/epidemiologia , Oligoelementos/sangue , Criança , Pré-Escolar , Monitoramento Epidemiológico , Feminino , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Estudos Longitudinais , Masculino , Estado Nutricional , Prevalência , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos , Fatores de Risco , Uganda/epidemiologia
7.
J Clin Med ; 6(8)2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28825656

RESUMO

Recent work has suggested that fibroblast growth factor-21 (FGF-21) is a useful biomarker of mitochondrial disease (MD). We routinely measured FGF-21 levels on patients who were investigated at our centre for MD and evaluated its diagnostic performance based on detailed genetic and other laboratory findings. Patients' FGF-21 results were assessed by the use of age-adjusted z-scores based on normalised FGF-21 values from a healthy population. One hundred and fifty five patients were investigated. One hundred and four of these patients had molecular evidence for MD, 27 were deemed to have disorders other than MD (non-MD), and 24 had possible MD. Patients with defects in mitochondrial DNA (mtDNA) maintenance (n = 32) and mtDNA rearrangements (n = 17) had the highest median FGF-21 among the MD group. Other MD patients harbouring mtDNA point mutations (n = 40) or mutations in other autosomal genes (n = 7) and those with partially characterised MD had lower FGF-21 levels. The area under the receiver operating characteristic curve for distinguishing MD from non-MD patients was 0.69. No correlation between FGF-21 and creatinine, creatine kinase, or cardio-skeletal myopathy score was found. FGF-21 was significantly associated with plasma lactate and ocular myopathy. Although FGF-21 was found to have a low sensitivity for detecting MD, at a z-score of 2.8, its specificity was above 90%. We suggest that a high serum concentration of FGF-21 would be clinically useful in MD, especially in adult patients with chronic progressive external ophthalmoplegia, and may enable bypassing muscle biopsy and directly opting for genetic analysis. Availability of its assay has thus modified our diagnostic pathway.

8.
J Innate Immun ; 8(5): 517-28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27423740

RESUMO

Withdrawal of iron from serum (hypoferraemia) is a conserved innate immune antimicrobial strategy that can withhold this critical nutrient from invading pathogens, impairing their growth. Hepcidin (Hamp1) is the master regulator of iron and its expression is induced by inflammation. Mice lacking Hamp1 from birth rapidly accumulate iron and are susceptible to infection by blood-dwelling siderophilic bacteria such as Vibrio vulnificus. In order to study the innate immune role of hepcidin against a background of normal iron status, we developed a transgenic mouse model of tamoxifen-sensitive conditional Hamp1 deletion (termed iHamp1-KO mice). These mice attain adulthood with an iron status indistinguishable from littermate controls. Hamp1 disruption and the consequent decline of serum hepcidin concentrations occurred within hours of a single tamoxifen dose. We found that the TLR ligands LPS and Pam3CSK4 and heat-killed Brucella abortus caused an equivalent induction of inflammation in control and iHamp1-KO mice. Pam3CSK4 and B. abortus only caused a drop in serum iron in control mice, while hypoferraemia due to LPS was evident but substantially blunted in iHamp1-KO mice. Our results characterise a powerful new model of rapidly inducible hepcidin disruption, and demonstrate the critical contribution of hepcidin to the hypoferraemia of inflammation.


Assuntos
Brucella abortus/imunologia , Hepcidinas/metabolismo , Inflamação/imunologia , Distúrbios do Metabolismo do Ferro/imunologia , Animais , Antígenos de Bactérias/imunologia , Genótipo , Hepcidinas/genética , Humanos , Inflamação/microbiologia , Distúrbios do Metabolismo do Ferro/microbiologia , Lipopeptídeos/imunologia , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Receptores Toll-Like/metabolismo
9.
Emerg Med J ; 33(3): 181-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26396233

RESUMO

BACKGROUND: Point-of-care testing allows rapid analysis of samples to facilitate prompt clinical decisions. Electrolyte and calcium abnormalities are common in acutely ill patients and can be associated with life-threatening consequences. There is uncertainty whether clinical decisions can be based on the results obtained from blood gas analysers or if laboratory results should be awaited. OBJECTIVES: To assess the agreement between sodium, potassium and calcium results from blood gas and laboratory mainstream analysers in a tertiary centre, with a network consisting of one referral and two peripheral hospitals, consisting of three networked clinical biochemistry laboratories. METHOD: Using the laboratory information management system database and over 11 000 paired samples in three hospital sites, the results of sodium, potassium and ionised calcium on blood gas analysers were studied over a 5-year period and compared with the corresponding laboratory results from the same patients booked in the laboratory within 1 h. RESULTS: The Pearson's linear correlation coefficient between laboratory and blood gas results for sodium, potassium and calcium were 0.92, 0.84 and 0.78, respectively. Deming regression analysis showed a slope of 1.04 and an intercept of -5.7 for sodium, slope of 0.93 and an intercept of 0.22 for potassium and a slope of 1.23 with an intercept of -0.55 for calcium. With some strict statistical assumptions, percentages of results lying outside the least significant difference were 9%, 26.7% and 20.8% for sodium, potassium and calcium, respectively. CONCLUSIONS: Most clinicians wait for the laboratory confirmation of results generated by blood gas analysers. In a large retrospective study we have shown that there is sufficient agreement between the results obtained from the blood gas and laboratory analysers to enable prompt clinical decisions to be made.


Assuntos
Gasometria/métodos , Cálcio/análise , Eletrólitos/análise , Testes Imediatos , Potássio/análise , Sódio/análise , Adulto , Gasometria/instrumentação , Criança , Feminino , Humanos , Masculino , Análise de Regressão , Estudos Retrospectivos
10.
Transplantation ; 92(3): 289-95, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21681143

RESUMO

BACKGROUND: Steatotic livers are increasingly common in the donor population. Cold storage of steatotic livers exacerbates ischemia-reperfuson injury and risks primary nonfunction and recipient death. Normothermic preservation avoids prolonged cooling of the organ and may be well suited to the preservation and resuscitation of damaged livers. By ex vivo normothermic perfusion, it may be possible to preserve and improve steatotic livers, so that transplantation is a viable option. METHODS: In a porcine model, streptozotocin was used to induce a hyperglycemic, ketotic state that, together with a high fat diet, resulted in mild hepatic steatosis at 5 weeks. A blood-based oxygenated ex vivo normothermic preservation system was then used to compare extended preservation of normal and mildly steatotic porcine livers at physiological pressures and flows. Serial liver biopsies were stained with Oil Red O, a specialist triglyceride stain, and were analyzed using custom-designed image analysis to quantify the degree of lipid deposition. RESULTS: Steatotic livers were capable of correcting the perfusate base excess and maintaining factor V and bile production and showed markers of liver injury comparable with normal livers. Steatotic livers had a significantly higher urea production and required no glucose support. Preliminary results suggest that prolonged normothermic perfusion results in a reduction in steatosis. CONCLUSIONS: This study suggests that steatotic livers can be successfully preserved using normothermic preservation for prolonged periods and that normothermic preservation facilitates a reduction in hepatic steatosis. Further studies are now needed including transplantation of steatotic livers after normothermic preservation.


Assuntos
Fígado Gorduroso/cirurgia , Transplante de Fígado/métodos , Preservação de Órgãos/métodos , Traumatismo por Reperfusão/cirurgia , Animais , Biomarcadores , Biópsia , Temperatura Baixa , Modelos Animais de Doenças , Fígado Gorduroso/patologia , Sobrevivência de Enxerto , Fígado/patologia , Perfusão , Projetos Piloto , Traumatismo por Reperfusão/patologia , Sus scrofa , Obtenção de Tecidos e Órgãos
11.
Ann Surg ; 250(1): 1-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19561463

RESUMO

OBJECTIVE: Transplantation of organs retrieved after cardiac arrest could increase the donor organ supply. However, the combination of warm ischemia and cold preservation is highly detrimental to the reperfused organ. Our objective was to maintain physiological temperature and organ function during preservation and thereby alleviate this injury and allow successful transplantation. BACKGROUND DATA: We have developed a liver perfusion device that maintains physiological temperature with provision of oxygen and nutrition. Reperfusion experiments suggested that this allows recovery of ischemic damage. METHODS: In a pig liver transplant model, we compared the outcome following either conventional cold preservation or warm preservation. Preservation periods of 5 and 20 hours and durations of warm ischemia of 40 and 60 minutes were tested. RESULTS: After 20 hours preservation without warm ischemia, post-transplant survival was improved (27%-86%, P = 0.026), with corresponding differences in transaminase levels and histological analysis. With the addition of 40 minutes warm ischemia, the differences were even more marked (cold vs. warm groups 0% vs. 83%, P = 0.001). However, with 60 minutes warm ischemia and 20 hours preservation, there were no survivors. Analysis of hemodynamic and liver function data during perfusion showed several factors to be predictive of posttransplant survival, including bile production, base excess, portal vein flow, and hepatocellular enzymes. CONCLUSIONS: Organ preservation by warm perfusion, maintaining physiological pressure and flow parameters, has enabled prolonged preservation and successful transplantation of both normal livers and those with substantial ischemic damage. This technique has the potential to address the shortage of organs for transplantation.


Assuntos
Isquemia/terapia , Fígado/irrigação sanguínea , Preservação de Órgãos/métodos , Perfusão/métodos , Animais , Temperatura Corporal , Isquemia Fria , Circulação Hepática , Transplante de Fígado , Modelos Animais , Perfusão/instrumentação , Suínos , Isquemia Quente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA