Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727270

RESUMO

Self-renewal and differentiation are two characteristics of hematopoietic stem cells (HSCs). Under steady physiological conditions, most primitive HSCs remain quiescent in the bone marrow (BM). They respond to different stimuli to refresh the blood system. The transition from quiescence to activation is accompanied by major changes in metabolism, a fundamental cellular process in living organisms that produces or consumes energy. Cellular metabolism is now considered to be a key regulator of HSC maintenance. Interestingly, HSCs possess a distinct metabolic profile with a preference for glycolysis rather than oxidative phosphorylation (OXPHOS) for energy production. Byproducts from the cellular metabolism can also damage DNA. To counteract such insults, mammalian cells have evolved a complex and efficient DNA damage repair (DDR) system to eliminate various DNA lesions and guard genomic stability. Given the enormous regenerative potential coupled with the lifetime persistence of HSCs, tight control of HSC genome stability is essential. The intersection of DDR and the HSC metabolism has recently emerged as an area of intense research interest, unraveling the profound connections between genomic stability and cellular energetics. In this brief review, we delve into the interplay between DDR deficiency and the metabolic reprogramming of HSCs, shedding light on the dynamic relationship that governs the fate and functionality of these remarkable stem cells. Understanding the crosstalk between DDR and the cellular metabolism will open a new avenue of research designed to target these interacting pathways for improving HSC function and treating hematologic disorders.


Assuntos
Dano ao DNA , Reparo do DNA , Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Animais , Instabilidade Genômica , Metabolismo Energético , Fosforilação Oxidativa
2.
Semin Pediatr Surg ; 32(3): 151308, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37295297

RESUMO

Antibiotic therapy remains a cornerstone of treatment of both medical and surgical presentations of necrotizing enterocolitis (NEC). However, guidelines regarding the administration of antibiotics for the treatment of NEC are lacking and practices vary amongst clinicians. Although the pathogenesis of NEC is unknown, there is consensus that the infant gastrointestinal microbiome contributes to the disease. The presumed connection between dysbiosis and NEC has prompted some to study whether early prophylactic enteral antibiotics can prevent NEC. Yet others have taken an opposing approach, studying whether perinatal antibiotic exposure increases the risk of NEC by inducing a state of dysbiosis. This narrative review summarizes what is known about antibiotics and their association with the infant microbiome and NEC, current antibiotic prescribing practices for infants with medical and surgical NEC, as well as potential strategies to further optimize the use of antibiotics in this population of infants.


Assuntos
Enterocolite Necrosante , Doenças Fetais , Microbioma Gastrointestinal , Doenças do Recém-Nascido , Lactente , Gravidez , Feminino , Recém-Nascido , Humanos , Enterocolite Necrosante/tratamento farmacológico , Enterocolite Necrosante/etiologia , Disbiose/complicações , Disbiose/tratamento farmacológico , Antibacterianos/uso terapêutico
3.
Nat Biotechnol ; 41(12): 1820-1828, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36928429

RESUMO

Sequencing-based approaches for the analysis of microbial communities are susceptible to contamination, which could mask biological signals or generate artifactual ones. Methods for in silico decontamination using controls are routinely used, but do not make optimal use of information shared across samples and cannot handle taxa that only partially originate in contamination or leakage of biological material into controls. Here we present Source tracking for Contamination Removal in microBiomes (SCRuB), a probabilistic in silico decontamination method that incorporates shared information across multiple samples and controls to precisely identify and remove contamination. We validate the accuracy of SCRuB in multiple data-driven simulations and experiments, including induced contamination, and demonstrate that it outperforms state-of-the-art methods by an average of 15-20 times. We showcase the robustness of SCRuB across multiple ecosystems, data types and sequencing depths. Demonstrating its applicability to microbiome research, SCRuB facilitates improved predictions of host phenotypes, most notably the prediction of treatment response in melanoma patients using decontaminated tumor microbiome data.


Assuntos
Microbiota , Neoplasias , Humanos , Microbiota/genética , Fenótipo
4.
FASEB J ; 36(5): e22282, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344224

RESUMO

Inflammatory bowel disease (IBD) represents a set of idiopathic and chronic inflammatory diseases of the gastrointestinal tract. Central to the pathogenesis of IBD is a dysregulation of normal intestinal epithelial homeostasis. cGAS is a DNA-sensing receptor demonstrated to promote autophagy, a mechanism that removes dysfunctional cellular components. Beclin-1 is a crucial protein involved in the initiation of autophagy. We hypothesized that cGAS plays a key role in intestinal homeostasis by upregulating Beclin-1-mediated autophagy. We evaluated intestinal cGAS levels in humans with IBD and in murine colonic tissue after performing a 2% dextran sulfate sodium (DSS) colitis model. Autophagy and cell death mechanisms were studied in cGAS KO and WT mice via qPCR, WB analysis, H&E, IF, and TUNEL staining. Autophagy was measured in stimulated intestinal epithelial cells (IECs) via WB analysis. Our data demonstrates cGAS to be upregulated during human and murine colitis. Furthermore, cGAS deficiency leads to worsened colitis and decreased levels of autophagy proteins including Beclin-1 and LC3-II. Co-IP demonstrates a direct binding between cGAS and Beclin-1 in IECs. Transfection of cGAS in stimulated HCT-116 cells leads to increased autophagy. IECs isolated from cGAS KO have diminished autophagic flux. cGAS KO mice subjected to DSS have increased cell death and cleaved caspase-3. Lastly, treatment of cGAS KO mice with rapamycin decreased the severity of colitis. Our data suggest that cGAS maintains intestinal epithelial homeostasis during human IBD and murine colitis by upregulating Beclin-1-mediated autophagy and preventing IEC death. Rescue of autophagy can attenuate the severity of colitis associated with cGAS deficiency.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Autofagia/fisiologia , Proteína Beclina-1/genética , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Homeostase , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nucleotídeos Cíclicos , Nucleotidiltransferases/genética
5.
Pediatr Crit Care Med ; 23(6): 425-434, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35283451

RESUMO

OBJECTIVES: The microbiome may be affected by trauma and critical illness. Many studies of the microbiome in critical illness are restricted to a single body site or time point and confounded by preexisting conditions. We report temporal and spatial alterations in the microbiome of previously healthy children with severe traumatic brain injury (TBI). DESIGN: We collected oral, rectal, and skin swabs within 72 hours of admission and then twice weekly until ICU discharge. Samples were analyzed by 16S rRNA gene amplicon sequencing. Children undergoing elective outpatient surgery served as controls. Alpha and beta diversity comparisons were performed with Phyloseq, and differentially abundant taxa were predicted using Analysis of Composition of Microbiomes. SETTING: Five quaternary-care PICUs. PATIENTS: Patients less than 18 years with severe TBI requiring placement of an intracranial pressure monitor. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Three hundred twenty-seven samples were analyzed from 23 children with severe TBI and 35 controls. The community composition of initial oral (F = 3.2756, R2 = 0.0535, p = 0.012) and rectal (F = 3.0702, R2 = 0.0649, p = 0.007) samples differed between TBI and control patients. Rectal samples were depleted of commensal bacteria from Ruminococcaceae, Bacteroidaceae, and Lachnospiraceae families and enriched in Staphylococcaceae after TBI (p < 0.05). In exploratory analyses, antibiotic exposure, presence of an endotracheal tube, and occurrence of an infection were associated with greater differences of the rectal and oral microbiomes between TBI patients and healthy controls, whereas enteral nutrition was associated with smaller differences (p < 0.05). CONCLUSIONS: The microbiome of children with severe TBI is characterized by early depletion of commensal bacteria, loss of site specificity, and an enrichment of potential pathogens. Additional studies are needed to determine the impact of these changes on clinical outcomes.


Assuntos
Lesões Encefálicas Traumáticas , Microbiota , Bactérias , Criança , Estado Terminal , Humanos , Microbiota/genética , RNA Ribossômico 16S/genética
6.
Cell Rep Med ; 2(9): 100393, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34622230

RESUMO

Gut microbiome succession affects infant development. However, it remains unclear what factors promote persistence of initial bacterial colonizers in the developing gut. Here, we perform strain-resolved analyses to compare gut colonization of preterm and full-term infants throughout the first year of life and evaluate associations between strain persistence and strain origin as well as genetic potential. Analysis of fecal metagenomes collected from 13 full-term and 9 preterm infants reveals that infants' initially distinct microbiomes converge by age 1 year. Approximately 11% of early colonizers, primarily Bacteroides and Bifidobacterium, persist during the first year of life, and those are more prevalent in full-term, compared with preterm infants. Examination of 17 mother-infant pairs reveals maternal gut strains are significantly more likely to persist in the infant gut than other strains. Enrichment in genes for surface adhesion, iron acquisition, and carbohydrate degradation may explain persistence of some strains through the first year of life.


Assuntos
Aderência Bacteriana , Microbioma Gastrointestinal , Ferro/metabolismo , Filogenia , Bactérias/genética , Metabolismo dos Carboidratos , Fezes/microbiologia , Genoma Humano , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro/fisiologia , Metagenômica , Irmãos
7.
Clin Infect Dis ; 73(9): e2754-e2762, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33097951

RESUMO

BACKGROUND: Although the healthy human skin microbiome has been the subject of recent studies, it is not known whether alterations among commensal microbes contribute to surgical site infections (SSIs). Our objective in this study was to characterize temporal and spatial variation in the skin microbiota of patients undergoing colorectal surgery and determine if dysbiosis contributes to SSIs. METHODS: Sixty one adults scheduled to undergo elective colon or rectal resection were identified by convenience sampling. By analyzing bacterial 16S rRNA gene sequences isolated from clinical samples, we used a culture-independent strategy to monitor perioperative changes in microbial diversity of fecal samples and the skin. RESULTS: A total of 990 samples from 61 patients were analyzed. Alpha diversity on the skin decreased after surgery but later recovered at the postoperative clinic visit. In most patients, we observed a transient postoperative loss of skin commensals (Corynebacterium and Propionibacterium) at the surgical site, which were replaced by potential pathogens and intestinal anaerobes (eg, Enterobacteriaceae). These changes were not observed on skin that was uninvolved in the surgical incision (chest wall). One patient developed a wound infection. Incisional skin swabs from this patient demonstrated a sharp postoperative increase in the abundance of Enterococcus, which was also cultured from wound drainage. CONCLUSIONS: We observed reproducible perioperative changes in the skin microbiome following surgery. The low incidence of SSIs in this cohort precluded analysis of associations between dysbiosis and infection. We postulate that real-time monitoring of the skin microbiome could provide actionable findings about the pathogenesis of SSIs.


Assuntos
Cirurgia Colorretal , Microbiota , Adulto , Disbiose , Humanos , RNA Ribossômico 16S/genética , Pele , Infecção da Ferida Cirúrgica/epidemiologia
8.
BMJ Open ; 10(9): e037690, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994242

RESUMO

INTRODUCTION: As the population ages, there is interest in strategies to promote resiliency, especially for frail patients at risk of its complications. The physiological stress of surgery in high-risk individuals has been proposed both as an important cause of accelerated age-related decline in health and as a model testing the effectiveness of strategies to improve resiliency to age-related health decline. We describe a randomised, embedded, multifactorial, adaptative platform (REMAP) trial to investigate multiple perioperative interventions, the first of which is metformin and selected for its anti-inflammatory and anti-ageing properties beyond its traditional blood glucose control features. METHODS AND ANALYSIS: Within a multihospital, single healthcare system, the Core Protocol for Strategies to Promote ResiliencY (SPRY) will be embedded within both the electronic health record (EHR) and the healthcare culture generating a continuously self-learning healthcare system. Embedding reduces the administrative burden of a traditional trial while accessing and rapidly analysing routine patient care EHR data. SPRY-Metformin is a placebo-controlled trial and is the first SPRY domain evaluating the effectiveness of three metformin dosages across three preoperative durations within a heterogeneous set of major surgical procedures. The primary outcome is 90-day hospital-free days. Bayesian posterior probabilities guide interim decision-making with predefined rules to determine stopping for futility or superior dosing selection. Using response adaptative randomisation, a maximum of 2500 patients allows 77%-92% power, detecting >15% primary outcome improvement. Secondary outcomes include mortality, readmission and postoperative complications. A subset of patients will be selected for substudies evaluating the microbiome, cognition, postoperative delirium and strength. ETHICS AND DISSEMINATION: The Core Protocol of SPRY REMAP and associated SPRY-Metformin Domain-Specific Appendix have been ethically approved by the Institutional Review Board and are publicly registered. Results will be publicly available to healthcare providers, patients and trial participants following achieving predetermined platform conclusions. TRIAL REGISTRATION NUMBER: NCT03861767.


Assuntos
Metformina , Complicações Pós-Operatórias , Teorema de Bayes , Pessoal de Saúde , Humanos , Metformina/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
J Surg Res ; 244: 502-508, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31330294

RESUMO

BACKGROUND: Pediatric surgeons have long been advocates of basic science research. However, new challenges facing the scientific community have threatened the success of academic surgeons pursuing basic science careers. The purpose of this study was to compare academic pediatric surgeons' perceptions of their ability to effectively conduct basic science research to those of other surgical subspecialties. METHODS: An online survey was distributed to all members of the Association for Academic Surgery and Society of University Surgeons. A total of 1033 members (41%) responded, and 137 (13.3%) were pediatric surgeons. Comparisons were made between the five most-represented surgical subspecialties. Data are presented as reporting percentage and P values by Student's t-test. RESULTS: Among the specialists studied, pediatric surgeons are those most likely to believe that surgeons can succeed as basic scientists in today's research environment. Pediatric surgery reported the highest rates of National Institutes of Health funding of all surgical specialties and the lowest rates of perceived external pressures related to clinical demands, hospital administrative duties, and work-life balance concerns than their surgical peers. CONCLUSIONS: Pediatric surgeons have a more optimistic perspective on the state of basic science research in surgery while exhibiting an enhanced ability to overcome the challenges that surgeon-scientists currently face. Our findings suggest that pediatric surgery may provide a model for succeeding in basic science in today's challenging surgical research environment.


Assuntos
Academias e Institutos , Pediatria , Ciência , Cirurgiões , Pesquisa Biomédica , Humanos
10.
Shock ; 51(4): 526-534, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30080745

RESUMO

The role of dietary fiber in chronic inflammatory disorders has been explored, but very little is known about its benefits in acute inflammation. Previously, we have demonstrated that dietary cellulose supplementation confers protection in a murine model of sepsis by promoting the growth of the gut microbiota that are linked to metabolic health. The survival benefit is associated with a decrease in serum concentration of proinflammatory cytokines, reduced neutrophil infiltration in the lungs, and diminished hepatic inflammation. Here, we aim to understand if the benefit of manipulating the gut microbiome exerts a broader "systemic" influence on the immune system in a lethal murine endotoxemia model. We hypothesize that mice-fed high-fiber cellulose (HF) diet will demonstrate a reduction in activated macrophages and dendritic cells (DCs) and a concomitant increase in the suppressive capacity of T-regulatory cells (Tregs) toward T cells responsiveness. We characterized the immunological profile and activation status of macrophages, DCs, and T cells in mice on HF diet that were then subjected to endotoxemia. Supplementation with HF diet decreased the number and activation of splenic macrophages and DCs in mice after LPS administration. Similarly, HF diet amplified the suppressive function of Tregs and induced anergy in T cells as compared with mice on a regular diet. Our data suggest that the use of HF diet can be a simple, yet effective tool that decreases the hepatic DNA-binding activity of NF-κB leading to a reduction in proinflammatory cytokine response in a murine endotoxemia model.


Assuntos
Endotoxemia/tratamento farmacológico , Endotoxemia/imunologia , NF-kappa B/metabolismo , RNA Ribossômico 16S/genética , Animais , Western Blotting , Celulose , Quimiocinas/sangue , Citocinas/sangue , Dieta Hiperlipídica , Suplementos Nutricionais , Endotoxemia/sangue , Citometria de Fluxo , Microbioma Gastrointestinal/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
11.
Ann Surg ; 269(1): 66-72, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29958227

RESUMO

OBJECTIVE: Surgeon-scientists are an essential component of the field of academic surgery, contributing to the fundamental understanding of disease and the discovery of innovative therapies. Despite this recognized value, the current landscape of academic medicine presents significant barriers to establishing and maintaining a successful career as a surgeon performing basic/translational research. Our objective is to define these barriers to academic success for surgeons, and to provide a consensus strategy for optimizing the chances of success. SUMMARY BACKGROUND DATA: There is a significant decline in the proportion of academic surgeons who are pursuing basic science/translational research, which represents a potential threat to the very identify of the translational surgeon-scientist. METHODS: Based on published literature and expert opinion, the Basic Science Committee of the Society of University of Surgeons prepared this roadmap to encourage and guide the next generation of surgeon-scientists as they embark on their academic careers. RESULTS: This roadmap highlights key elements to consider in choosing an initial job and the importance of identifying a team of committed mentors. Expectations and guidelines for the first several years in practice are offered. CONCLUSIONS: With guidance and mentorship, aspiring surgeonscientists can overcome the challenges inherent in choosing this career path and sustain the important legacy of those before them.


Assuntos
Pesquisa Biomédica/educação , Escolha da Profissão , Educação de Pós-Graduação em Medicina/métodos , Cirurgia Geral/educação , Mentores , Cirurgiões/educação , Pesquisa Translacional Biomédica/educação , Humanos
12.
Ann Surg ; 265(6): 1053-1059, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27643928

RESUMO

OBJECTIVE: The aim of this study was to examine the challenges confronting surgeons performing basic science research in today's academic surgery environment. SUMMARY OF BACKGROUND DATA: Multiple studies have identified challenges confronting surgeon-scientists and impacting their ability to be successful. Although these threats have been known for decades, the downward trend in the number of successful surgeon-scientists continues. Clinical demands, funding challenges, and other factors play important roles, but a rigorous analysis of academic surgeons and their experiences regarding these issues has not previously been performed. METHODS: An online survey was distributed to 2504 members of the Association for Academic Surgery and Society of University Surgeons to determine factors impacting success. Survey results were subjected to statistical analyses. We also reviewed publicly available data regarding funding from the National Institutes of Health (NIH). RESULTS: NIH data revealed a 27% decline in the proportion of NIH funding to surgical departments relative to total NIH funding from 2007 to 2014. A total of 1033 (41%) members responded to our survey, making this the largest survey of academic surgeons to date. Surgeons most often cited the following factors as major impediments to pursuing basic investigation: pressure to be clinically productive, excessive administrative responsibilities, difficulty obtaining extramural funding, and desire for work-life balance. Surprisingly, a majority (68%) did not believe surgeons can be successful basic scientists in today's environment, including departmental leadership. CONCLUSIONS: We have identified important barriers that confront academic surgeons pursuing basic research and a perception that success in basic science may no longer be achievable. These barriers need to be addressed to ensure the continued development of future surgeon-scientists.


Assuntos
Pesquisa Biomédica/tendências , Cirurgiões/tendências , Pesquisa Biomédica/economia , Financiamento Governamental , Previsões , Humanos , National Institutes of Health (U.S.) , Cirurgiões/educação , Estados Unidos
13.
Shock ; 46(6): 649-654, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27454385

RESUMO

The microbiota of critically ill patients likely undergoes dramatic changes but has not been rigorously studied with a culture-independent high-throughput approach. The aim of this study was to characterize spatial and temporal variation in the microbiota of critically ill patients. Trauma and acute surgery patients admitted to the intensive care unit (ICU) were sampled at five body sites (stool, tongue, skin, trachea, urine) every 3 to 4 days. A mean of 10.8 samples was collected from 32 patients with a mean sampling period of 8.8 days. Bacterial 16S rRNA sequences were amplified and sequenced for microbiota analyses. Results were compared to data from unhospitalized adult participants in the American Gut and Human Microbiome Projects. Relative to healthy adults, alpha diversity was decreased in ICU gut and skin samples at all time points. Diversity in tongue swabs decreased over time. Beta diversity measures indicated differences in community membership between critically ill and healthy adults at each body site. Taxonomic alterations in the ICU included depletion of important commensal bacteria such as Faecalibacterium in GI samples and Corynebacterium in skin swabs and enrichment with pathogens such as Enterococcus, Mycoplasma, and Staphylococcus. A high proportion of ICU sample sets contained pathogens present simultaneously at three body sites indicating widespread colonization. In several cases, clinically relevant airway infections were preceded by the appearance of the causative pathogen in tracheal microbiome profiles. These results demonstrate that the microbiome of critically ill patients undergoes a loss of diversity, loss of site specificity, and a shift toward dominant pathogens. These changes may provide opportunities to precisely modulate the microbiome and thereby improve patient outcomes.


Assuntos
Estado Terminal , Disbiose/genética , Adulto , Corynebacterium/genética , Corynebacterium/isolamento & purificação , Enterococcus/genética , Enterococcus/isolamento & purificação , Faecalibacterium/genética , Faecalibacterium/isolamento & purificação , Fezes/microbiologia , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Microbiota/genética , Mycoplasma/genética , Mycoplasma/isolamento & purificação , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Pele/microbiologia , Staphylococcus/genética , Staphylococcus/isolamento & purificação , Língua/microbiologia
14.
Clin Infect Dis ; 63(1): 71-78, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27056397

RESUMO

BACKGROUND: Lumenal obstruction has typically been regarded as the cause of acute appendicitis (AA). Recent evidence including data from "antibiotics first" trials suggests that this disease may result from invasion of the appendix by specific pathogens. Small studies have identified an abundance of bacteria from the genus Fusobacterium in appendixes from patients with AA. We aimed to validate these findings in a larger cohort of children with appendicitis in addition to profiling the appendiceal microbiota in a population of children without appendicitis. METHODS: Appendix swabs were collected from children undergoing appendectomy for AA (n = 60), incidental appendectomy for reasons other than appendicitis (n = 18), or ileocecectomy for inflammatory bowel disease (n = 7), in addition to samples from other sites. Bacterial 16S ribosomal RNA gene sequences from each sample were amplified, sequenced, and analyzed with the UPARSE and QIIME programs. RESULTS: We found that the normal human appendix harbors populations of Fusobacteria that are generally absent in fecal samples from healthy adults and children. In patients with AA, Fusobacteria populations proliferate and often persist despite several weeks of broad-spectrum antibiotics prior to surgery. Relative to non-AA samples, AA samples were depleted of sequences from the genus Bacteroides Phylogenetic analysis of sequence data indicates that F. nucleatum, F. necrophorum, and F. varium are the species of Fusobacterium observed in AA samples. CONCLUSIONS: These results indicate that the appendiceal niche harbors distinct microbial populations that likely contribute to the pathogenesis of appendicitis, which may one day be leveraged to improve the diagnosis and/or treatment of patients with AA.


Assuntos
Apendicite/microbiologia , Apêndice/microbiologia , Fusobactérias/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Doença Aguda , Adolescente , Adulto , Apendicite/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Fezes/microbiologia , Fusobactérias/isolamento & purificação , Microbioma Gastrointestinal/genética , Infecções por Bactérias Gram-Negativas/epidemiologia , Humanos
15.
J Pediatr Surg ; 50(6): 1049-52, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25840603

RESUMO

BACKGROUND: The factors that contribute to success as a pediatric surgeon-scientist are not well defined. The purpose of this study is to define a group of NIH-funded pediatric surgeons, assess their academic productivity, and elucidate factors that have contributed to their success. METHODS: Pediatric surgeons were queried in the NIH report database to determine NIH funding awarded. Academic productivity was then assessed. An online survey was then targeted to NIH-funded pediatric surgeons. RESULTS: Since 1988, 83 pediatric surgeon-investigators have received major NIH funding. Currently, there are 37 pediatric surgeons with 43 NIH-sponsored awards. The mean h-index of this group of pediatric surgeons was 18 ± 1.1, mean number of publications (since 2001) was 21 ± 2.1, and both increase commensurate with academic rank. In response to the survey, 81% engaged in research during their surgical residency, and 48% were mentored by a pediatric surgeon-scientist. More than 60% of respondents had significant protected time and financial support. Factors felt to be most significant for academic success included mentorship, perseverance, and protected time. CONCLUSIONS: Mentorship, perseverance, institutional commitment to protected research time, and financial support are considered to be important to facilitate the successes of pediatric surgeon-scientists. These results will be useful to aspiring pediatric surgeon-scientists and departments wishing to develop a robust research program.


Assuntos
Competência Clínica , Educação Médica Continuada/normas , Eficiência , Cirurgia Geral/educação , Internato e Residência , Pediatria/educação , Cirurgiões/educação , Humanos , Estudos Retrospectivos , Estados Unidos
16.
J Pediatr Surg ; 49(3): 441-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24650474

RESUMO

BACKGROUND: Although luminal obstruction has traditionally been viewed as the underlying cause of appendicitis, recent evidence has suggested that the disease may result directly from invasion by specific pathogens, e.g. Fusobacterium nucleatum. The purpose of this study was to survey microbial communities within pediatric appendectomy specimens using a culture-independent approach. METHODS: We performed 16S ribosomal gene sequence analysis to profile the microbiota present within luminal fluid obtained from 22 pediatric appendectomy specimens. These included 10 simple appendicitis cases, 5 perforated appendicitis cases, 2 interval appendectomies, and 5 incidental appendectomies. RESULTS: Samples could be divided into 2 distinct clusters based upon the composition of the appendiceal bacterial communities. Appendicitis samples contained an increased abundance of Fusobacterium spp. and a reduced abundance of Bacteroides spp. relative to non-appendicitis cases. Appendicitis samples also contained variable amounts of other oral taxa such as Porphyromonas, Parvimonas, and Gemella, whereas these taxa were generally absent from non-appendicitis samples. CONCLUSIONS: Acute appendicitis is associated with an abundance of Fusobacterium spp. and other pathogens commonly found in the oral cavity. Further research is needed to determine whether these organisms directly cause appendicitis or rather proliferate in the appendix as a secondary consequence of inflammation.


Assuntos
Apendicite/microbiologia , Fusobacterium/isolamento & purificação , Microbiota , Adolescente , Apendicectomia , Apendicite/etiologia , Apendicite/cirurgia , Apêndice/microbiologia , Bacteroides/isolamento & purificação , Líquidos Corporais/microbiologia , Criança , Pré-Escolar , DNA Bacteriano/análise , DNA Bacteriano/genética , DNA Ribossômico/análise , DNA Ribossômico/genética , Fusobacterium/genética , Humanos , Lactente , Boca/microbiologia , Projetos Piloto , Porphyromonas/isolamento & purificação , Proteobactérias/isolamento & purificação , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Ribotipagem , Análise de Sequência de DNA
17.
Ann Surg ; 257(2): 287-94, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23001074

RESUMO

OBJECTIVE: Here, we determine how formula feeding impacts the gut microbiota and host transcriptome. BACKGROUND: Formula-fed (FF) infants are at risk for diseases that involve complex interactions between microbes and host immune elements such as necrotizing enterocolitis. The aims of this study were to simultaneously examine the microbiota and host transcriptional profiles of FF and maternal-fed (MF) mice to evaluate how diet impacts gut colonization and host genes. METHODS: After 72 hours of FF or MF, colonic tissue was collected. 16S ribosomal RNA was sequenced with Roche GS-FLX (Genome Sequencer-FLX) pyrosequencing. Operational taxonomical unit clustering, diversity analysis, and principal coordinate analysis (PCA) were performed. Complementary DNA libraries were sequenced by Solexa. Reads were annotated by BLAST (Basic Local Alignment Search Tool) search against mouse RNA database [National Center for Biotechnology Information (NCBI) build-37] and functionally classified using the KOG (Eukaryotic Orthologous Groups) database (NCBI). RESULTS: Firmicutes (P < 0.001) was the dominant phylum in MF pups, whereas Proteobacteria (P < 0.001) and Bacteroidetes (P < 0.05) were dominant in FF mice. On the genus level, FF mice had increased Serratia (P < 0.001) and Lactococcus (P < 0.05) whereas MF mice had increased Lactobacillus (P < 0.001). PCA confirmed clustering by diet. Solexa sequencing demonstrated different (P < 0.05) messenger RNA transcript levels in 148 genes. Heme oxygenase 1 (P < 0.01), an oxidative stress marker, was increased 25-fold in FF mice. In addition, decreased vinculin (P < 0.05), a cytoskeletal protein associated with adherens junctions in FF pups suggested impaired gut structural integrity. Diet also impacted immune regulation, cell cycle control/gene expression, cell motility, and vascular function genes. CONCLUSIONS: FF shifted gut microbiota and structural integrity, oxidative stress, and immune function genes, presumably increasing vulnerability to disease in FF mice. Interrogation of microbial and host gene expression in FF neonates may offer new insight on how diet affects disease pathogenesis.


Assuntos
Colo/imunologia , Colo/microbiologia , Substitutos do Leite , Leite Humano , Ração Animal , Animais , Animais Recém-Nascidos , DNA Complementar/genética , Biblioteca Gênica , Mucosa Intestinal/imunologia , Metagenoma/imunologia , Camundongos , Camundongos Endogâmicos C3H , Estresse Oxidativo/imunologia , Análise de Componente Principal , Receptores de Quimiocinas/metabolismo , Transcriptoma
18.
Gastroenterology ; 143(3): 708-718.e5, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22796522

RESUMO

BACKGROUND & AIMS: Little is known about factors that regulate intestinal epithelial differentiation; microbial recognition receptors such as Toll-like receptor (TLR)4 might be involved. We investigated whether intestinal TLR4 regulates epithelial differentiation and is involved in development of necrotizing enterocolitis (NEC) of the immature intestine. METHODS: Mice with conditional disruption of TLR4 in the intestinal epithelium and TLR4 knockout (TLR4(-/-)) mice were generated by breeding TLR4(loxp/loxp) mice with villin-cre and Ella-cre, respectively. Enterocytes that did not express or overexpressed TLR4 were created by lentiviral or adenoviral transduction. Intestinal organoids were cultured on tissue matrices. Bile acids were measured by colorimetric assays, and microbial composition was determined by 16S pyrosequencing. NEC was induced in 7- to 10-day-old mice by induction of hypoxia twice daily for 4 days. RESULTS: TLR4(-/-) mice and mice with enterocyte-specific deletion of TLR4 were protected from NEC; epithelial differentiation into goblet cells was increased via suppressed Notch signaling in the small intestinal epithelium. TLR4 also regulates differentiation of goblet cells in intestinal organoid and enterocyte cell cultures; differentiation was increased on deletion of TLR4 and restored when TLR4 was expressed ectopically. TLR4 signaling via Notch was increased in intestinal tissue samples from patients with NEC, and numbers of goblet cells were reduced. 16S pyrosequencing revealed that wild-type and TLR4-deficient mice had similar microbial profiles; increased numbers of goblet cells were observed in mice given antibiotics. TLR4 deficiency reduced levels of luminal bile acids in vivo, and addition of bile acids to TLR4-deficient cell cultures prevented differentiation of goblet cells. CONCLUSIONS: TLR4 signaling and Notch are increased in intestinal tissues of patients with NEC and required for induction of NEC in mice. TLR4 prevents goblet cell differentiation, independently of the microbiota. Bile acids might initiate goblet cell development.


Assuntos
Diferenciação Celular , Enterocolite Necrosante/metabolismo , Células Caliciformes/metabolismo , Intestino Delgado/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Animais Recém-Nascidos , Ácidos e Sais Biliares/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/genética , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/patologia , Enterocolite Necrosante/prevenção & controle , Células Caliciformes/microbiologia , Células Caliciformes/patologia , Humanos , Hipóxia/complicações , Fórmulas Infantis , Recém-Nascido , Intestino Delgado/microbiologia , Intestino Delgado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organoides , Interferência de RNA , Ratos , Receptores Notch/metabolismo , Transdução de Sinais , Técnicas de Cultura de Tecidos , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Transfecção
19.
J Pediatr Surg ; 46(3): 577-84, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21376215

RESUMO

Bold advances in the past decade have made it possible to carefully study the contributions of microbes to normal human development and to disease pathogenesis. The intestinal microbiota has been implicated in adult diseases ranging from obesity to cancer, but there have been relatively few investigations of bacteria in surgical diseases of infancy and childhood. In this review, we discuss how novel culture-independent approaches have been harnessed to profile microbes present within clinical specimens. Unique features of the pediatric microbiota and innovative approaches to manipulate the gut flora are also reviewed. Finally, we detail the contributions of gut microbes to 3 diseases relevant to pediatric surgeons: necrotizing enterocolitis, obesity, and inflammatory bowel disease. Current and future research regarding the pediatric microbiota is likely to translate to improved outcomes for infants and children with surgical diseases.


Assuntos
Enterocolite Necrosante/microbiologia , Cirurgia Geral , Doenças Inflamatórias Intestinais/microbiologia , Intestinos/microbiologia , Metagenoma , Consórcios Microbianos/fisiologia , Obesidade/microbiologia , Pediatria , Adolescente , Animais , Translocação Bacteriana , Cirurgia Bariátrica , Criança , Pré-Escolar , Infecção Hospitalar/complicações , Infecção Hospitalar/microbiologia , Dieta , Suscetibilidade a Doenças , Enterocolite Necrosante/cirurgia , Vida Livre de Germes , Humanos , Lactente , Recém-Nascido , Doenças Inflamatórias Intestinais/cirurgia , Unidades de Terapia Intensiva Neonatal , Camundongos , Obesidade/cirurgia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/microbiologia , Complicações Pós-Operatórias/prevenção & controle , Pouchite/etiologia , Pouchite/microbiologia , Pouchite/prevenção & controle , Probióticos/uso terapêutico , Especificidade da Espécie , Virulência
20.
Ann Surg ; 253(6): 1094-101, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21422915

RESUMO

OBJECTIVE: The purpose of this review article is to summarize what is currently known about microbes associated with the human body and to provide examples of how this knowledge impacts the care of surgical patients. BACKGROUND: Pioneering research over the past decade has demonstrated that human beings live in close, constant contact with dynamic communities of microbial organisms. This new reality has wide-ranging implications for the care of surgical patients. METHODS AND RESULTS: Recent advances in the culture-independent study of the human microbiome are reviewed. To illustrate the translational relevance of these studies to surgical disease, we discuss in detail what is known about the role of microbes in the pathogenesis of obesity, gastrointestinal malignancies, Crohn disease, and perioperative complications including surgical site infections and sepsis. The topics of mechanical bowel preparation and perioperative antibiotics are also discussed. CONCLUSIONS: Heightened understanding of the microbiome in coming years will likely offer opportunities to refine the prevention and treatment of a wide variety of surgical conditions.


Assuntos
Metagenoma/genética , Cirurgia Geral , Técnicas Genéticas , Humanos , Metagenoma/fisiologia , Técnicas Microbiológicas , Simbiose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA