Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 153: 113372, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35809481

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a critical regulator of different signalling cascades such as the EGFR pathway. The biological importance of PTP1B is further evidenced by knockout mice studies and the identification of recurrent mutations/deletions in PTP1B linked to metabolic and oncogenic alterations. Cisplatin is among the most widely used anticancer drug. The biological effects of cisplatin are thought to arise primarily from DNA damaging events involving cisplatin-DNA adducts. However, increasing evidence indicate that the biological properties of cisplatin could also rely on the perturbation of other processes such as cell signalling through direct interaction with certain cysteine residues in proteins. Here, we provide molecular, cellular and in vivo evidence suggesting that PTP1B is a target of cisplatin. Mechanistic studies indicate that cisplatin inhibited PTP1B in an irreversible manner and binds covalently to the catalytic cysteine residue of the enzyme. Accordingly, experiments conducted in cells and mice exposed to cisplatin showed inhibition of endogenous PTP1B and concomitant increase in tyrosine phosphorylation of EGFR. These findings are consistent with previous studies showing tyrosine phosphorylation-dependent activation of the EGFR pathway by cisplatin and with recent studies suggesting PTP1B inhibition by cisplatin and other platinum complexes. Importantly, our work provides novel mechanistic evidence that PTP1B is a protein target of cisplatin and is inhibited by this drug at molecular, cellular and in vivo levels. In addition, our work may contribute to the understanding of the pathways undergoing modulation upon cisplatin administration beyond of the established genotoxic effect of cisplatin.


Assuntos
Cisteína , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Animais , Domínio Catalítico , Cisplatino/farmacologia , Cisteína/metabolismo , Receptores ErbB/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Tirosina/metabolismo
2.
Nutrients ; 14(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35631180

RESUMO

Plant-derived polyphenols flavonoids are increasingly being recognized for their medicinal potential. These bioactive compounds derived from plants are gaining more interest in ameliorating adverse health risks because of their low toxicity and few side effects. Among them, therapeutic approaches demonstrated the efficacy of catechins, a major group of flavonoids, in reverting several aspects of Down syndrome, the most common genomic disorder that causes intellectual disability. Down syndrome is characterized by increased incidence of developing Alzheimer's disease, obesity, and subsequent metabolic disorders. In this focused review, we examine the main effects of catechins on comorbidities linked with Down syndrome. We also provide evidence of catechin effects on DYRK1A, a dosage-sensitive gene encoding a protein kinase involved in brain defects and metabolic disease associated with Down syndrome.


Assuntos
Catequina , Síndrome de Down , Catequina/farmacologia , Catequina/uso terapêutico , Comorbidade , Suplementos Nutricionais , Humanos , Polifenóis
3.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092951

RESUMO

Epigallocatechin gallate (EGCG) is an inhibitor of DYRK1A, a serine/threonine kinase considered to be a major contributor of cognitive dysfunctions in Down syndrome (DS). Two clinical trials in adult patients with DS have shown the safety and efficacy to improve cognitive phenotypes using commercial green tea extract containing EGCG (45% content). In the present study, we performed a preclinical study using FontUp®, a new nutritional supplement with a chocolate taste specifically formulated for the nutritional needs of patients with DS and enriched with a standardized amount of EGCG in young mice overexpressing Dyrk1A (TgBACDyrk1A). This preparation is differential with previous one used, because its green tea extract has been purified to up 94% EGCG of total catechins. We analyzed the in vitro effect of green tea catechins not only for EGCG, but for others residually contained in FontUp®, on DYRK1A kinase activity. Like EGCG, epicatechin gallate was a noncompetitive inhibitor against ATP, molecular docking computations confirming these results. Oral FontUp® normalized brain and plasma biomarkers deregulated in TgBACDyrk1A, without negative effect on liver and cardiac functions. We compared the bioavailability of EGCG in plasma and brain of mice and have demonstrated that EGCG had well crossed the blood-brain barrier.


Assuntos
Encéfalo/efeitos dos fármacos , Catequina/análogos & derivados , Síndrome de Down/dietoterapia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Chá/química , Animais , Antioxidantes/administração & dosagem , Antioxidantes/uso terapêutico , Disponibilidade Biológica , Biomarcadores/sangue , Biomarcadores/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Catequina/administração & dosagem , Catequina/efeitos adversos , Catequina/química , Catequina/uso terapêutico , Suplementos Nutricionais , Síndrome de Down/sangue , Síndrome de Down/enzimologia , Síndrome de Down/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Polifenóis/análise , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Regulação para Cima , Quinases Dyrk
4.
Exp Toxicol Pathol ; 68(6): 365-70, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27165444

RESUMO

Homocysteine, a sulfur-containing amino acid formed during the metabolism of methionine, is commonly slightly elevated in the plasma of the general population. Additionally, we previously found that cystathionine beta synthase-deficient mice, a murine model of hyperhomocysteinemia, exhibit altered activities of xenobiotic metabolizing enzymes (XME), which dispose of foreign chemicals, in the liver. Thus, hyperhomocysteinemia may result in susceptibility to xenobiotics like cadmium, a heavy-metal toxicant found in drinking water, atmospheric air, and food. Consequently, we exposed hyperhomocysteinemic mice to cadmium via their drinking water for one month to analyze the combined effects of hyperhomocysteinemia and cadmium exposure in liver. No difference in plasma homocysteine level was found after cadmium administration in control and hyperhomocysteinemic mice, but the glutathione level was significantly lower in exposed hyperhomocysteinemic mice compared to control mice, reflecting oxidative stress. We therefore analyzed the effect of Cd administration on hepatic XMEs known to be dysregulated in hyperhomocysteinemic mice: paraoxonase 1, a phase I XME, and NAD(P)H: quinone oxidoreductase, a phase II XME. Cadmium exposure negatively affected activity of paraoxonase 1, a calcium-dependent enzyme. Thus, we analyzed another calcium-dependent enzyme known to be dysregulated in liver of hyperhomocysteinemic mice, calpain, which was also significantly lower after cadmium administration. A comparison of the calculated affinities of cadmium docking versus calcium redocking suggested that cadmium ions may inhibit enzymatic activities by preventing the binding of calcium ions. Moreover, the increased NAD(P)H: quinone oxidoreductase activity observed after cadmium administration could indicate the presence of protective mechanisms in liver of mice. In conclusion, although cadmium administration had no effect on plasma homocysteine level, its effects on plasma glutathionine level suggest a susceptibility to cadmium in the condition of hyperhomocysteinemia, which could be countered by an increased NAD(P)H: quinone oxidoreductase activity.


Assuntos
Cádmio/toxicidade , Cistationina beta-Sintase/deficiência , Hiper-Homocisteinemia , Animais , Arildialquilfosfatase/química , Arildialquilfosfatase/metabolismo , Cádmio/metabolismo , Calpaína/química , Calpaína/metabolismo , Modelos Animais de Doenças , Glutationa/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Simulação de Acoplamento Molecular
5.
Comput Biol Chem ; 61: 155-61, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26878129

RESUMO

Metalloproteases involved in extracellular matrix remodeling play a pivotal role in cell response by regulating the bioavailability of cytokines and growth factors. Recently, the disintegrin and metalloprotease, ADAMTS1 has been demonstrated to be able to activate the transforming growth factor TGF-ß, a major factor in fibrosis and cancer. The KTFR sequence from ADAMTS1 is responsible for the interaction with the LSKL peptide from the latent form of TGF-ß, leading to its activation. While the atomic details of the interaction site can be the basis of the rational design of efficient inhibitory molecules, the binding mode of interaction is totally unknown. In this study, we show that recombinant fragments of human ADAMTS1 containing KTFR sequence keep the ability to bind the latent form of TGF-ß. The recombinant fragment with the best affinity is modeled to investigate the binding mode of LSKL peptide with ADAMTS1 at the atomic level. Using a combined approach with molecular docking and multiple independent molecular dynamics (MD) simulations, we provide the binding mode of LSKL peptide with ADAMTS1. The MD simulations starting with the two lowest energy model predicted by molecular docking shows stable interactions characterized by 3 salt bridges (K3-NH3(+) with E626-COO(-); L4-COO(-) with K619-NH3(+); L1-NH3(+) with E624-COO(-)) and 2 hydrogen bonds (S2-OH with E623-COO(-); L4-NH with E623-COO(-)). The knowledge of this interaction mechanism paves the way to the design of more potent and more specific inhibitors against the inappropriate activation of TGF-ß by ADAMTS1 in liver diseases.


Assuntos
Peptídeos/química , Fator de Crescimento Transformador beta/química , Simulação por Computador , Humanos , Simulação de Dinâmica Molecular
6.
Methods Mol Biol ; 1268: 1-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25555718

RESUMO

Peptide structure identification is an important contribution to the further characterization of the residues involved in functional interactions. De novo structure peptide prediction has, in the past few years, made significant progresses that make reasonable, for peptides up to 50 amino acids, its use for the fast identification of their structural topologies. Here, we introduce some of the concepts underlying approaches of the field, together with their limits.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Peptídeos/química , Conformação Molecular , Simulação de Dinâmica Molecular
7.
Nucleic Acids Res ; 42(Web Server issue): W221-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24803671

RESUMO

Peptide-protein interactions are important to many processes of life, particularly for signal transmission or regulatory mechanisms. When no information is known about the interaction between a protein and a peptide, it is of interest to propose candidate sites of interaction at the protein surface, to assist the design of biological experiments to probe the interaction, or to serve as a starting point for more focused in silico approaches. PEP-SiteFinder is a tool that will, given the structure of a protein and the sequence of a peptide, identify protein residues predicted to be at peptide-protein interface. PEP-SiteFinder relies on the 3D de novo generation of peptide conformations given its sequence. These conformations then undergo a fast blind rigid docking on the complete protein surface, and we have found, as the result of a benchmark over 41 complexes, that the best poses overlap to some extent the experimental patch of interaction for close to 90% complexes. In addition, PEP-SiteFinder also returns a propensity index we have found informative about the confidence of the prediction. The PEP-SiteFinder web server is available at http://bioserv.rpbs.univ-paris-diderot.fr/PEP-SiteFinder.


Assuntos
Simulação de Acoplamento Molecular/métodos , Peptídeos/química , Peptídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Software , Sítios de Ligação , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Internet , Conformação Proteica
8.
Anticancer Agents Med Chem ; 12(6): 565-79, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22263788

RESUMO

Human neutrophil elastase (HNE), a main actor in the development of chronic obstructive pulmonary diseases, has been recently involved in non-small cell lung cancer progression. It can act at several levels (i) intracellularly, cleaving for instance the adaptor molecule insulin receptor substrate-1 (IRS-1) (ii) at the cell surface, hydrolyzing receptors as CD40 (iii) in the extracellular space, generating elastin fragments i.e. morphoelastokines which potently stimulate cancer cell invasiveness and angiogenesis. Since decades, researchers identified natural compounds and/or synthesized agents which antagonize HNE activity that will be described in this review article. Some of these compounds might be of value as therapeutic agents in lung cancer. However, it is now widely accepted that lung tumor invasion and metastasis involve proteolytic cascades. Accordingly, we will here mainly focus our attention to natural substances able to display a dual inhibitory capacity (i.e. lipids and derivatives, phenolics) towards HNE and matrix metalloproteinases (MMPs), particularly MMP-2. To that purpose, we recently synthesize substances named "LipoGalardin" (Moroy G. et al., Biochem. Pharmacol., 2011, 81(5), 626-635) exhibiting such inhibitory bifunctionality. At last, we will propose an original synthetic scheme for designing a potent biheaded HNE/MMP-2 inhibitor.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Elastase de Leucócito/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Metaloproteinases de Matriz , Antineoplásicos/síntese química , Antígenos CD40/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Elastina/metabolismo , Inibidores Enzimáticos/síntese química , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Elastase de Leucócito/metabolismo , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Metaloproteinases da Matriz/metabolismo , Modelos Moleculares , alfa 1-Antitripsina/metabolismo
9.
Biochem Pharmacol ; 81(5): 626-35, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21146503

RESUMO

Molecular modeling was undertaken at aims to analyze the interactions between oleic acid and human leukocyte elastase (HLE), plasmin and matrix metalloproteinase-2 (MMP-2), involved in the inhibitory capacity of fatty acid towards those proteases. The carboxylic acid group of the fatty acid was found to form a salt bridge with Arg(217) of HLE while unsaturation interacted with Phe(192) and Val(216) at the S(3) subsite, and alkyl end group occupied S(1) subsite. In keeping with the main contribution of kringle 5 domain in plasmin-oleic acid interaction [Huet E et al. Biochem Pharmacol 2004;67(4):643-54], docking computations revealed that the long alkyl chain of fatty acid inserted within an hydrophobic groove of this domain with the carboxylate forming a salt bridge with Arg(512). Finally, blind docking revealed that oleic acid could occupy both S'(1) subsite and Fn(II)(3) domain of MMP-2. Several residues involved in Fn(II)(3)/oleic acid interaction were similarly implicated in binding of this domain to collagen. Oleic acid was covalently linked to galardin (at P'(2) position): OL-GAL (CONHOH) or to its carboxylic acid counterpart: OL-GAL (COOH), with the idea to obtain potent MMP inhibitors able to also interfere with elastase and plasmin activity. OL-GALs were found less potent MMP inhibitors as compared to galardin and no selectivity for MMP-2 or MMP-9 could be demonstrated. Docking computations indicated that contrary to oleic acid, OL-GAL binds only to MMP-2 active site and surprisingly, hydroxamic acid was unable to chelate Zn, but instead forms a salt bridge with the N-terminal Tyr(110). Interestingly, oleic acid and particularly OL-GALs proved to potently inhibit MMP-13. OL-GAL was found as potent as galardin (K(i) equal to 1.8nM for OL-GAL and 1.45nM for GAL) and selectivity for that MMP was attained (2-3 log orders of difference in inhibitory potency as compared to other MMPs). Molecular modeling studies indicated that oleic acid could be accommodated within S'(1) pocket of MMP-13 with carboxylic acid chelating Zn ion. OL-GAL also occupied such pocket but hydroxamic acid did not interact with Zn but instead was located at 2.8Å from Tyr(176). Since these derivatives retained, as their oleic acid original counterpart, the capacity to inhibit the amidolytic activity of HLE and plasmin as well as to decrease HLE- and plasmin-mediated pro MMP-3 activation, they might be of therapeutic value to control proteolytic cascades in chronic inflammatory disorders.


Assuntos
Dipeptídeos/química , Fibrinolisina/antagonistas & inibidores , Elastase de Leucócito/antagonistas & inibidores , Inibidores de Metaloproteinases de Matriz , Modelos Moleculares , Ácidos Oleicos/química , Dipeptídeos/síntese química , Ativação Enzimática , Fibrinolisina/química , Humanos , Elastase de Leucócito/química , Metaloproteinases da Matriz/química , Ácido Oleico/síntese química , Ácido Oleico/química , Ácidos Oleicos/síntese química , Ligação Proteica , Precursores de Proteínas/química , Relação Estrutura-Atividade
10.
J Biol Chem ; 284(26): 17499-511, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19293158

RESUMO

The proteins of the Bcl-2 family are important regulators of apoptosis, or programmed cell death. These proteins regulate this fundamental biological process via the formation of heterodimers involving both pro- and anti-apoptotic family members. Disruption of the balance between anti- and pro-apoptotic Bcl-2 proteins is the cause of numerous pathologies. Bcl-xl, an anti-apoptotic protein of this family, is known to form heterodimers with multiple pro-apoptotic proteins, such as Bad, Bim, Bak, and Bid. To elucidate the molecular basis of this recognition process, we used molecular dynamics simulations coupled with the Molecular Mechanics/Poisson-Boltzmann Surface Area approach to identify the amino acids that make significant energetic contributions to the binding free energy of four complexes formed between Bcl-xl and pro-apoptotic Bcl-2 homology 3 peptides. A fifth protein-peptide complex composed of another anti-apoptotic protein, Bcl-w, in complex with the peptide from Bim was also studied. The results identified amino acids of both the anti-apoptotic proteins as well as the Bcl-2 homology 3 (BH3) domains of the pro-apoptotic proteins that make strong, recurrent interactions in the protein complexes. The calculations show that the two anti-apoptotic proteins, Bcl-xl and Bcl-w, share a similar recognition mechanism. Our results provide insight into the molecular basis for the promiscuous nature of this molecular recognition process by members of the Bcl-2 protein family. These amino acids could be targeted in the design of new mimetics that serve as scaffolds for new antitumoral molecules.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/química , Proteínas de Membrana/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas/química , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína de Morte Celular Associada a bcl/química , Proteína bcl-X/química , Sequência de Aminoácidos , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteína 11 Semelhante a Bcl-2 , Simulação por Computador , Sequência Conservada , Humanos , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Homologia de Sequência de Aminoácidos , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Proteína bcl-X/metabolismo
11.
Bioorg Med Chem ; 15(14): 4753-66, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17512742

RESUMO

Structural analogues of Ilomastat (Galardin), containing unsaturation(s) and chain extension carrying bulky phenyl group or alkyl moieties at P'1 were synthesized and purified by centrifugal partition chromatography. They were analyzed for their inhibitory capacity towards MMP-1, MMP-2, MMP-3, MMP-9 and MMP-14, main endopeptidases involved in tumour progression. Presence of unsaturation(s) decreased the inhibitory potency of compounds but, in turn increased their selectivity for gelatinases. 2b and 2d derivatives with a phenyl group inhibited preferentially MMP-9 with IC50 equal to 45 and 38 nM, respectively, but also display activity against MMP-2 (IC50 equal to 280 and 120 nM, respectively). Molecular docking computations confirmed affinity of these substances for both gelatinases. With aims to obtain a specific gelatinase A (MMP-2) inhibitor, P'1 of Ilomastat was modified to carry one unsaturation coupled to an alkyl chain with pentylidene group. Docking studies indicated that MMP-2, but not MMP-9, could accommodate such substitution; indeed 2a proved to inhibit MMP-2 (IC50=123 nM), while displaying no inhibitory capacity towards MMP-9.


Assuntos
Indóis/química , Indóis/farmacologia , Inibidores de Metaloproteinases de Matriz , Modelos Moleculares , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Alquilação , Dicroísmo Circular , Simulação por Computador , Ligação de Hidrogênio , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Indóis/síntese química , Indóis/isolamento & purificação , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/química , Metaloproteinase 9 da Matriz/metabolismo , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/isolamento & purificação , Ligação Proteica , Estereoisomerismo , Relação Estrutura-Atividade
12.
Biopolymers ; 78(4): 206-20, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15812830

RESUMO

The degradation of elastin, the insoluble biopolymer of tropoelastin, can lead to the production of small peptides. These elastin-derived peptides (EDPs) are playing a key role in cellular behavior within the extracellular matrix, showing a great variety of biological effects such as chemotaxis, stimulation of cell proliferation, ion flux modifications, vasorelaxation, and inflammatory enzymes secretion. It has also been demonstrated recently that EDPs containing the GXXPG motif could induce pro-MMP1 and pro-MMP3 upregulation. Elastolysis could then cause collagen degradation and play an important role in the aging process. Many experimental studies have been devoted to EDPs, but their structure/activity relationships are not well elucidated yet. However, the assumption that their active conformation is a type VIII beta-turn on GXXP was highly suggested on the basis of predictive statistical calculations. Investigation of the EDPs three-dimensional (3D) structure would provide useful information for drug-design strategies to propose specific inhibitors. The work presented here reports theoretical results obtained from molecular dynamics simulations performed over 128 human EDPs containing the GXXP motif. We show that all the peptides, for which the central residues are not glycines, adopt a canonical (or very close to) type VIII beta-turn structure on the GXXP sequence. Amino acids surrounding this motif are also important for the structural behavior. Any residue located before the GXXP motif (XGXXP) increases the beta-turn stabilization, whereas the residue located after GXXP (GXXPX) has no significant structural effect. Moreover, we show their biological activity can be correlated with their ability to exhibit a type VIII beta-turn conformation.


Assuntos
Elastina/química , Elastina/metabolismo , Peptídeos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Simulação por Computador , Glicina/química , Humanos , Peptídeos/fisiologia , Conformação Proteica , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Tropoelastina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA