Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131726

RESUMO

Background: In people living with HIV (PLWH) on combination antiretroviral therapy (cART), persistent systemic inflammation is a driving force for the progression of comorbidities, such as cardiovascular and cerebrovascular diseases. In this context, monocyte- and macrophage-related inflammation rather than T cell activation is a major cause of chronic inflammation. However, the underlying mechanism of how monocytes cause persistent systemic inflammation in PLWH is elusive. Methods and Results: In vitro, we demonstrated that lipopolysaccharides (LPS) or tumor necrosis factor alpha (TNFα), induced a robust increase of Delta-like ligand 4 (Dll4) mRNA and protein expression in human monocytes and Dll4 secretion (extracellular Dll4, exDll4) from monocytes. Enhanced membrane-bound Dll4 (mDll4) expression in monocytes triggered Notch1 activation to promote pro-inflammatory factors expression. Dll4 silencing and inhibition of Nocth1 activation diminished the LPS or TNFα -induced inflammation. exDll4 releases in response to cytokines occurred in monocytes but not endothelial cells or T cells. In clinical specimens, we found that PLWH, both male and female, on cART, showed a significant increase in mDll4 expression, activation of Dll4-Notch1 signaling, and inflammatory markers in monocytes. Although there was no sex effect on mDII4 in PLWH, plasma exDll4 was significantly elevated in males but not females compared to HIV uninfected individuals. Furthermore, exDll4 plasma levels paralleled with monocytes mDll4 in male PLWH. Circulating exDll4 was also positively associated with pro-inflammatory monocytes phenotype and negatively associated with classic monocytes phenotype in male PLWH. Conclusion: Pro-inflammatory stimuli increase Dll4 expression and Dll4-Notch1 signaling activation in monocytes and enhance monocyte proinflammatory phenotype, contributing to persistent systemic inflammation in male and female PLWH. Therefore, monocyte mDll4 could be a potential biomarker and therapeutic target of systemic inflammation. Plasma exDll4 may also play an additional role in systemic inflammation but primarily in men.

2.
Res Pract Thromb Haemost ; 7(2): 100053, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37063766

RESUMO

A state of the art lecture titled "Megakaryocytes in the Lung" was presented at the London International Society on Thrombosis and Haemostasis congress in 2022. This lecture highlighted that although most medical teaching presents platelets as bone marrow megakaryocyte-derived cellular mediators of thrombosis, platelets are also a critical part of the immune system with direct roles in responses to sterile tissue injury and pathogens. Bone marrow megakaryocytes differentiate from hematopoietic stem cells and package platelets with immune molecules. Activated platelets, therefore, initiate or accelerate the progression of vascular inflammatory pathologies, as well as being regulators of immune responses to infectious agents. Platelets are now known to have mechanistic roles in immune responses to disease processes, such as heart transplant rejection, myocardial infarction, aortic aneurysm, peripheral vascular disease, and infections. From these studies comes the concept that megakaryocytes are immune cell progenitors and recent emerging information highlights that megakaryocytes may themselves be immune cells. Despite megakaryocytes being described in the lung for >100 years, lung megakaryocytes have only recently been shown to be platelet producing and lung megakaryocytes are immune-differentiated in both phenotype and function. What is still not known is the origin of lung megakaryocytes and roles of lung megakaryocytes in health and disease. This review will discuss the long history of lung megakaryocytes in the literature and potential models for megakaryocyte origins and immune functions. Finally, we summarize relevant new data related to this topic that was presented during the 2022 International Society on Thrombosis and Haemostasis Congress.

3.
J Neurointerv Surg ; 15(12): 1264-1268, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36878687

RESUMO

BACKGROUND: Hyperdense cerebral artery sign (HCAS) is an imaging biomarker in acute ischemic stroke (AIS) that has been shown to be associated with various clinical outcomes and stroke etiology. While prior studies have correlated HCAS with histopathological composition of cerebral thrombus, it is unknown whether and to what extent HCAS is also associated with distinct clot protein composition. METHODS: Thromboembolic material from 24 patients with AIS were retrieved via mechanical thrombectomy and evaluated with mass spectrometry in order to characterize their proteomic composition. Presence (+) or absence (-) of HCAS on preintervention non-contrast head CT was then determined and correlated with thrombus protein signature with abundance of individual proteins calculated as a function HCAS status. RESULTS: 24 clots with 1797 distinct proteins in total were identified. 14 patients were HCAS(+) and 10 were HCAS(-). HCAS(+) were most significantly differentially abundant in actin cytoskeletal protein (P=0.002, Z=2.82), bleomycin hydrolase (P=0.007, Z=2.44), arachidonate 12-lipoxygenase (P=0.004, Z=2.60), and lysophospholipase D (P=0.007, Z=2.44), among other proteins; HCAS(-) clots were differentially enriched in soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (P=0.0009, Z=3.11), tyrosine-protein kinase Fyn (P=0.002, Z=2.84), and several complement proteins (P<0.05, Z>1.71 for all), among numerous other proteins. Additionally, HCAS(-) thrombi were enriched in biological processes involved with plasma lipoprotein and protein-lipid remodeling/assembling, and lipoprotein metabolic processes (P<0.001), as well as cellular components including mitochondria (P<0.001). CONCLUSIONS: HCAS is reflective of distinct proteomic composition in AIS thrombus. These findings suggest that imaging can be used to identify mechanisms of clot formation or maintenance at the protein level, and might inform future research on thrombus biology and imaging characterization.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Humanos , AVC Isquêmico/complicações , Isquemia Encefálica/etiologia , Proteômica , Trombose/patologia , Acidente Vascular Cerebral/etiologia , Artérias Cerebrais/patologia , Tomografia Computadorizada por Raios X/métodos , Lipoproteínas , Trombectomia/métodos
4.
Biochem Biophys Res Commun ; 558: 29-35, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33895548

RESUMO

Estrogen therapy is used to treat patients with post-menopausal symptoms, such as hot flashes and dyspareunia. Estrogen therapy also decreases the risk of fractures from osteoporosis in post-menopausal women. However, estrogen increases the risk of venous thromboembolic events, such as pulmonary embolism, but the pathways through which estrogen increase the risk of thromboembolism is unknown. Here, we show that estrogen elicits endothelial exocytosis, the key step in vascular thrombosis and inflammation. Exogenous 17ß-estradiol (E2) stimulated endothelial exocytosis of Weibel-Palade bodies (WPBs), releasing von Willebrand factor (vWF) and interleukin-8 (IL-8). Conversely, the estrogen antagonist ICI-182,780 interfered with E2-induced endothelial exocytosis. The ERα agonist propyl pyrazole triol (PPT) but not the ERß agonist diarylpropionitrile (DPN) induced vWF release, while ERα silencing counteracted vWF release by E2, suggesting that ERα mediates this effect. Exocytosis triggered by E2 occurred rapidly within 15 min and was not inhibited by either actinomycin D or cycloheximide. On the contrary, it was inhibited by the pre-treatment of U0126 or SB203580, an ERK or a p38 inhibitor, respectively, suggesting that E2-induced endothelial exocytosis is non-genomically mediated by the MAP kinase pathway. Finally, E2 treatment enhanced platelet adhesion to endothelial cells ex vivo, which was interfered with the pre-treatment of ICI-182,780 or U0126. Taken together, our data show that estrogen activates endothelial exocytosis non-genomically through the ERα-MAP kinase pathway. Our data suggest that adverse cardiovascular effects such as vascular inflammation and thrombosis should be considered in patients before menopausal hormone treatment.


Assuntos
Células Endoteliais/efeitos dos fármacos , Estradiol/efeitos adversos , Exocitose/efeitos dos fármacos , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Terapia de Reposição de Estrogênios/efeitos adversos , Exocitose/fisiologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/fisiologia , Pós-Menopausa/efeitos dos fármacos , Pós-Menopausa/fisiologia , Fatores de Risco , Tromboembolia/etiologia , Corpos de Weibel-Palade/efeitos dos fármacos , Corpos de Weibel-Palade/patologia , Corpos de Weibel-Palade/fisiologia
5.
J Am Heart Assoc ; 9(17): e015998, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32819189

RESUMO

Background Microvesicles are cell membrane-derived vesicles that have been shown to augment inflammation. Specifically, monocyte-derived microvesicles (MDMVs), which can express the coagulation protein tissue factor, contribute to thrombus formation and cardiovascular disease. People living with HIV experience higher prevalence of cardiovascular disease and also exhibit increased levels of plasma microvesicles. The process of microvesicle release has striking similarity to budding of enveloped viruses. The surface protein tetherin inhibits viral budding by physically tethering budding virus particles to cells. Hence, we investigated the role of tetherin in regulating the release of MDMVs during HIV infection. Methods and Results The plasma of aviremic HIV-infected individuals had increased levels of tissue factor + MDMVs, as measured by flow cytometry, and correlated to reduced tetherin expression on monocytes. Superresolution confocal and electron microscopy showed that tetherin localized at the site of budding MDMVs. Mechanistic studies revealed that the exposure of monocytes to HIV-encoded Tat triggered tetherin loss and subsequent rise in MDMV production. Overexpression of tetherin in monocytes led to morphologic changes in the pseudopodia directly underneath the MDMVs. Further, tetherin knockout mice demonstrated a higher number of circulating MDMVs and less time to bleeding cessation. Conclusions Our studies define a novel regulatory mechanism of MDMV release through tetherin and explore its contribution to the procoagulatory state that is frequently observed in people with HIV. Such insights could lead to improved therapies for individuals infected with HIV and also for those with cardiovascular disease.


Assuntos
Antivirais/metabolismo , Antígeno 2 do Estroma da Médula Óssea/metabolismo , Micropartículas Derivadas de Células/genética , Infecções por HIV/metabolismo , Adulto , Animais , Fatores de Coagulação Sanguínea/metabolismo , Antígeno 2 do Estroma da Médula Óssea/farmacologia , Antígeno 2 do Estroma da Médula Óssea/ultraestrutura , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Membrana Celular/metabolismo , Micropartículas Derivadas de Células/patologia , Micropartículas Derivadas de Células/virologia , Feminino , HIV/efeitos dos fármacos , Infecções por HIV/sangue , Infecções por HIV/complicações , Infecções por HIV/virologia , Humanos , Imuno-Histoquímica/métodos , Inflamação/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Monócitos/metabolismo , Prevalência , Proteínas Virais Reguladoras e Acessórias/metabolismo
6.
Nat Commun ; 11(1): 3479, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661250

RESUMO

Genetic factors contribute to the risk of thrombotic diseases. Recent genome wide association studies have identified genetic loci including SLC44A2 which may regulate thrombosis. Here we show that Slc44a2 controls platelet activation and thrombosis by regulating mitochondrial energetics. We find that Slc44a2 null mice (Slc44a2(KO)) have increased bleeding times and delayed thrombosis compared to wild-type (Slc44a2(WT)) controls. Platelets from Slc44a2(KO) mice have impaired activation in response to thrombin. We discover that Slc44a2 mediates choline transport into mitochondria, where choline metabolism leads to an increase in mitochondrial oxygen consumption and ATP production. Platelets lacking Slc44a2 contain less ATP at rest, release less ATP when activated, and have an activation defect that can be rescued by exogenous ADP. Taken together, our data suggest that mitochondria require choline for maximum function, demonstrate the importance of mitochondrial metabolism to platelet activation, and reveal a mechanism by which Slc44a2 influences thrombosis.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Ativação Plaquetária/fisiologia , Trombose/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Masculino , Espectrometria de Massas , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Ativação Plaquetária/genética , Agregação Plaquetária/genética , Agregação Plaquetária/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Trombose/genética
7.
Arthritis Rheumatol ; 72(10): 1759-1770, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32388926

RESUMO

OBJECTIVE: Connective tissue disease (CTD)-associated pulmonary arterial hypertension (PAH) is the second most common etiology of PAH and carries a poor prognosis. Recently, it has been shown that female human tumor necrosis factor (TNF)-transgenic (Tg) mice die of cardiopulmonary disease by 6 months of age. This study was undertaken to characterize this pathophysiology and assess its potential as a novel model of CTD-PAH. METHODS: Histologic analysis was performed on TNF-Tg and wild-type (WT) mice to characterize pulmonary vascular and right ventricular (RV) pathology (n = 40 [4-5 mice per group per time point]). Mice underwent right-sided heart catheterization (n = 29) and micro-computed tomographic angiography (n = 8) to assess vascular disease. Bone marrow chimeric mice (n = 12), and anti-TNF-treated mice versus placebo-treated mice (n = 12), were assessed. RNA sequencing was performed on mouse lung tissue (n = 6). RESULTS: TNF-Tg mice displayed a pulmonary vasculopathy marked by collagen deposition (P < 0.001) and vascular occlusion (P < 0.001) with associated RV hypertrophy (P < 0.001) and severely increased RV systolic pressure (mean ± SD 75.1 ± 19.3 mm Hg versus 26.7 ± 1.7 mm Hg in WT animals; P < 0.0001). TNF-Tg mice had increased α-smooth muscle actin (α-SMA) staining, which corresponded to proliferation and loss of von Willebrand factor (vWF)-positive endothelial cells (P < 0.01). There was an increase in α-SMA-positive, vWF-positive cells (P < 0.01), implicating endothelial-mesenchymal transition. Bone marrow chimera experiments revealed that mesenchymal but not bone marrow-derived cells are necessary to drive this process. Treatment with anti-TNF therapy halted the progression of disease. This pathology closely mimics human CTD-PAH, in which patient lungs demonstrate increased TNF signaling and significant similarities in genomic pathway dysregulation. CONCLUSION: The TNF-Tg mouse represents a novel model of CTD-PAH, recapitulates key disease features, and can serve as a valuable tool for discovery and assessment of therapeutics.


Assuntos
Doenças do Tecido Conjuntivo/patologia , Ventrículos do Coração/patologia , Hipertrofia Ventricular Direita/patologia , Pulmão/patologia , Hipertensão Arterial Pulmonar/patologia , Animais , Doenças do Tecido Conjuntivo/complicações , Doenças do Tecido Conjuntivo/diagnóstico por imagem , Doenças do Tecido Conjuntivo/genética , Modelos Animais de Doenças , Células Endoteliais/patologia , Ventrículos do Coração/diagnóstico por imagem , Hipertrofia Ventricular Direita/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Camundongos Transgênicos , Hipertensão Arterial Pulmonar/diagnóstico por imagem , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Arterial Pulmonar/genética , Fator de Necrose Tumoral alfa/genética , Microtomografia por Raio-X
8.
Aging (Albany NY) ; 11(24): 11955-11974, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852838

RESUMO

Platelets have central roles in both immune responses and development. Stimulated platelets express leukocyte adhesion molecules and release numerous immune modulatory factors that recruit and activate leukocytes, both at the sites of activation and distantly. Monocytes are innate immune cells with dynamic immune modulatory functions that change during the aging process, a phenomenon termed "inflammaging". We have previously shown that platelets are a major source of plasma beta-2 microglobulin (ß2M) and that ß2M induced a monocyte pro-inflammatory phenotype. Plasma ß2M increases with age and is a pro-aging factor. We hypothesized that platelet derived ß2M regulates monocyte phenotypes in the context of aging. Using wild-type (WT) and platelet specific ß2M knockout mice (Plt-ß2M-/-) mice, we found that plasma ß2M increased with age and correlated with increased circulating Ly6CHi monocytes. However, aged Plt-ß2M-/- mice had significantly fewer Ly6CHi monocytes compared to WT mice. Quantitative real-time PCR of circulating monocytes showed that WT mouse monocytes were more "pro-inflammatory" with age, while Plt-ß2M-/- derived monocytes adopted a "pro-reparative" phenotype. Older Plt-ß2M-/- mice had a significant decline in heart function compared to age matched WT mice, as well as increased cardiac fibrosis and pro-fibrotic markers. These data suggest that platelet-derived ß2M regulates age associated monocyte polarization, and a loss of platelet derived ß2M shifted monocytes and macrophages to a pro-reparative phenotype and increased pro-fibrotic cardiac responses. Platelet regulation of monocyte phenotypes via ß2M may maintain a balance between inflammatory and reparative signals that affects age related physiologic outcomes.


Assuntos
Envelhecimento/imunologia , Envelhecimento/metabolismo , Plaquetas/metabolismo , Macrófagos/metabolismo , Microglobulina beta-2/metabolismo , Envelhecimento/patologia , Animais , Plaquetas/imunologia , Fibrose/imunologia , Fibrose/patologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Miocárdio/patologia , Fenótipo
9.
Annu Rev Immunol ; 37: 125-144, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30485751

RESUMO

Platelets have dual physiologic roles as both cellular mediators of thrombosis and immune modulatory cells. Historically, the thrombotic function of platelets has received significant research and clinical attention, but emerging research indicates that the immune regulatory roles of platelets may be just as important. We now know that in addition to their role in the acute thrombotic event at the time of myocardial infarction, platelets initiate and accelerate inflammatory processes that are part of the pathogenesis of atherosclerosis and myocardial infarction expansion. Furthermore, it is increasingly apparent from recent studies that platelets impact the pathogenesis of many vascular inflammatory processes such as autoimmune diseases, sepsis, viral infections, and growth and metastasis of many types of tumors. Therefore, we must consider platelets as immune cells that affect all phases of immune responses.


Assuntos
Aterosclerose/imunologia , Doenças Autoimunes/imunologia , Plaquetas/imunologia , Inflamação , Infarto do Miocárdio/imunologia , Trombose/imunologia , Viroses/imunologia , Animais , Carcinogênese/imunologia , Humanos , Imunomodulação
10.
Arterioscler Thromb Vasc Biol ; 38(7): 1594-1606, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29724818

RESUMO

OBJECTIVE: Reduced blood flow and tissue oxygen tension conditions result from thrombotic and vascular diseases such as myocardial infarction, stroke, and peripheral vascular disease. It is largely assumed that while platelet activation is increased by an acute vascular event, chronic vascular inflammation, and ischemia, the platelet activation pathways and responses are not themselves changed by the disease process. We, therefore, sought to determine whether the platelet phenotype is altered by hypoxic and ischemic conditions. APPROACH AND RESULTS: In a cohort of patients with metabolic and peripheral artery disease, platelet activity was enhanced, and inhibition with oral antiplatelet agents was impaired compared with platelets from control subjects, suggesting a difference in platelet phenotype caused by the disease. Isolated murine and human platelets exposed to reduced oxygen (hypoxia chamber, 5% O2) had increased expression of some proteins that augment platelet activation compared with platelets in normoxic conditions (21% O2). Using a murine model of critical limb ischemia, platelet activity was increased even 2 weeks postsurgery compared with sham surgery mice. This effect was partly inhibited in platelet-specific ERK5 (extracellular regulated protein kinase 5) knockout mice. CONCLUSIONS: These findings suggest that ischemic disease changes the platelet phenotype and alters platelet agonist responses because of changes in the expression of signal transduction pathway proteins. Platelet phenotype and function should, therefore, be better characterized in ischemic and hypoxic diseases to understand the benefits and limitations of antiplatelet therapy.


Assuntos
Plaquetas/metabolismo , Hipóxia/sangue , Isquemia/sangue , Oxigênio/sangue , Doença Arterial Periférica/sangue , Ativação Plaquetária , Animais , Plaquetas/efeitos dos fármacos , Estudos de Casos e Controles , Estado Terminal , Modelos Animais de Doenças , Humanos , Hipóxia/fisiopatologia , Isquemia/tratamento farmacológico , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 7 Ativada por Mitógeno/sangue , Proteína Quinase 7 Ativada por Mitógeno/genética , Doença Arterial Periférica/tratamento farmacológico , Doença Arterial Periférica/fisiopatologia , Fenótipo , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/uso terapêutico , Pneumonectomia , Transdução de Sinais
11.
Immunol Res ; 65(5): 1089-1094, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28914425

RESUMO

Platelet factor 4 (PF4) is a megakaryocyte-/platelet-derived chemokine with diverse functions as a regulator of vascular and immune biology. PF4 has a central role in vessel injury responses, innate immune cell responses, and T-helper cell differentiation. We have now discovered that PF4 has a direct role in B cell differentiation in the bone marrow. Mice lacking PF4 (PF4-/- mice) had fewer developing B cells in the bone marrow beginning after the pre-pro-B cell stage of differentiation. In vitro, PF4 increased the differentiation of hematopoietic progenitors to B cell lineage cells, indicating that PF4 has a direct effect on B cell differentiation. STAT5 activation is essential in early B cell development and PF4 increased the phosphorylation of STAT5. Taken together, these data demonstrate that PF4 has an important role in increasing B cell differentiation in the bone marrow environment.


Assuntos
Linfócitos B/imunologia , Linfócitos B/fisiologia , Células da Medula Óssea/fisiologia , Fator Plaquetário 4/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT5/metabolismo
12.
Immunol Res ; 65(4): 828-840, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28378118

RESUMO

MicroRNAs (miRNAs) are major regulators of cell responses, particularly in stressed cell states and host immune responses. Some miRNAs have a role in pathogen defense, including regulation of immune responses to Plasmodium parasite infection. Using a nonlethal mouse model of blood stage malaria infection, we have found that miR-451-/- mice infected with Plasmodium yoelii XNL cleared infection at a faster rate than did wild-type (WT) mice. MiR-451-/- mice had an increased leukocyte response to infection, with the protective phenotype primarily driven by CD4+ T cells. WT and miR-451-/- CD4+ T cells had similar activation responses, but miR-451-/- CD4+ cells had significantly increased proliferation, both in vitro and in vivo. Myc is a miR-451 target with a central role in cell cycle progression and cell proliferation. CD4+ T cells from miR-451-/- mice had increased postactivation Myc expression. RNA-Seq analysis of CD4+ cells demonstrated over 5000 differentially expressed genes in miR-451-/- mice postinfection, many of which are directly or indirectly Myc regulated. This study demonstrates that miR-451 regulates T cell proliferative responses in part via a Myc-dependent mechanism.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Malária/imunologia , MicroRNAs/genética , Plasmodium yoelii/imunologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Ciclo Celular , Proliferação de Células , Células Cultivadas , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myc/genética , Regulação para Cima
13.
Blood ; 129(21): 2917-2927, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28336528

RESUMO

Atherothrombosis is a process mediated by dysregulated platelet activation that can cause life-threatening complications and is the leading cause of death by cardiovascular disease. Platelet reactivity in hyperlipidemic conditions is enhanced when platelet scavenger receptor CD36 recognizes oxidized lipids in oxidized low-density lipoprotein (oxLDL) particles, a process that induces an overt prothrombotic phenotype. The mechanisms by which CD36 promotes platelet activation and thrombosis remain incompletely defined. In this study, we identify a mechanism for CD36 to promote thrombosis by increasing activation of MAPK extracellular signal-regulated kinase 5 (ERK5), a protein kinase known to be exquisitely sensitive to redox stress, through a signaling pathway requiring Src kinases, NADPH oxidase, superoxide radical anion, and hydrogen peroxide. Pharmacologic inhibitors of ERK5 blunted platelet activation and aggregation in response to oxLDL and targeted genetic deletion of ERK5 in murine platelets prevented oxLDL-induced platelet deposition on immobilized collagen in response to arterial shear. Importantly, in vivo thrombosis experiments after bone marrow transplantation from platelet-specific ERK5 null mice into hyperlipidemic apolipoprotein E null mice showed decreased platelet accumulation and increased thrombosis times compared with mice transplanted with ERK5 expressing control bone marrows. These findings suggest that atherogenic conditions critically regulate platelet CD36 signaling by increasing superoxide radical anion and hydrogen peroxide through a mechanism that promotes activation of MAPK ERK5.


Assuntos
Plaquetas/imunologia , Antígenos CD36/imunologia , Hiperlipidemias/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Proteína Quinase 7 Ativada por Mitógeno/imunologia , Ativação Plaquetária/imunologia , Trombose/imunologia , Aloenxertos , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/imunologia , Plaquetas/patologia , Transplante de Medula Óssea , Antígenos CD36/genética , Humanos , Hiperlipidemias/genética , Hiperlipidemias/patologia , Lipoproteínas LDL/genética , Lipoproteínas LDL/imunologia , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Mutantes , Proteína Quinase 7 Ativada por Mitógeno/genética , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Ativação Plaquetária/genética , Trombose/genética , Trombose/patologia
14.
Arterioscler Thromb Vasc Biol ; 36(8): 1638-1646, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27365404

RESUMO

OBJECTIVE: Survival of immune and nonimmune cells relies on Axl, a receptor tyrosine kinase, which is implicated in hypertension. Activated T lymphocytes are involved in regulation of high blood pressure. The goal of the study was to investigate the role of Axl in T-lymphocyte functions and its contribution to salt-dependent hypertension. APPROACH AND RESULTS: We report increased apoptosis in peripheral blood from Axl(-/-) mice because of lower numbers of white blood cells mostly lymphocytes. In vitro studies showed modest reduction in interferon gamma production in Axl(-/-) type 1 T helper cells. Axl did not affect basic proliferation capacity or production of interleukin 4 in Axl(-/-) type 2 T helper cells. However, competitive repopulation of Axl(-/-) bone marrow or adoptive transfer of Axl(-/-) CD4(+) T cells to Rag1(-/-) mice showed robust effect of Axl on T lymphocyte expansion in vivo. Adoptive transfer of Axl(-/-) CD4(+) T cells was protective in a later phase of deoxycorticosterone-acetate and salt hypertension. Reduced numbers of CD4(+) T cells in circulation and in perivascular adventitia decreased vascular remodeling and increased vascular apoptosis in the late phase of hypertension. CONCLUSIONS: These findings suggest that Axl is critical for survival of T lymphocytes, especially during vascular remodeling in hypertension.


Assuntos
Apoptose , Pressão Sanguínea , Linfócitos T CD4-Positivos/enzimologia , Hipertensão/enzimologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Cloreto de Sódio na Dieta , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/transplante , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Acetato de Desoxicorticosterona , Modelos Animais de Doenças , Genótipo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipertensão/genética , Hipertensão/patologia , Hipertensão/fisiopatologia , Interferon gama/metabolismo , Interleucina-4/metabolismo , Ativação Linfocitária , Masculino , Camundongos Knockout , Fenótipo , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Fatores de Tempo , Remodelação Vascular , Receptor Tirosina Quinase Axl
15.
PLoS One ; 11(6): e0157115, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27270236

RESUMO

Platelets play an essential role in hemostasis and wound healing by facilitating thrombus formation at sites of injury. Platelets also mediate inflammation and contain several pro-inflammatory molecules including cytokines and chemokines that mediate leukocyte recruitment and activation. Not surprisingly, platelet dysfunction is known to contribute to several inflammatory disorders. Antiplatelet therapies, such as aspirin, adenosine diphosphate (ADP) antagonists, glycoprotein IIb/IIIa (GPIIb/IIIa) inhibitors, and anticoagulants such as warfarin, dampen platelet activity at the risk of unwarranted bleeding. Thus, the development of drugs that reduce platelet-mediated inflammation without interfering with thrombus formation is of importance to combat platelet-associated disorders. We have shown here for the first time that the tetracycline antibiotic, minocycline, administered to HIV-infected individuals reduces plasma levels of soluble CD40L and platelet factor 4 levels, host molecules predominately released by platelets. Minocycline reduced the activation of isolated platelets in the presence of the potent platelet activator, thrombin, as measured by ELISA and flow cytometry. Platelet degranulation was reduced upon exposure to minocycline as shown by mepacrine retention and flow cytometry. However, minocycline had no effect on spreading, aggregation, GPIIb/IIIa activation, or in vivo thrombus formation. Lastly, immunoblot analysis suggests that the antiplatelet activity of minocycline is likely mediated by inhibition of mixed lineage kinase 3 (MLK3)-p38 MAPK signaling axis and loss of p38 activity. Our findings provide a better understanding of platelet biology and a novel repurposing of an established antibiotic, minocycline, to specifically reduce platelet granule release without affecting thrombosis, which may yield insights in generating novel, specific antiplatelet therapies.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Minociclina/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Regulação para Baixo/efeitos dos fármacos , Humanos , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
16.
Am J Physiol Heart Circ Physiol ; 309(6): H1048-58, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26276821

RESUMO

The pathophysiological mechanisms of the immune activation of smooth muscle cells are not well understood. Increased expression of Axl, a receptor tyrosine kinase, was recently found in arteries from patients after coronary bypass grafts. In the present study, we hypothesized that Axl-dependent immune activation of smooth muscle cells regulates vein graft remodeling. We observed a twofold decrease in intimal thickening after vascular and systemic depletion of Axl in vein grafts. Local depletion of Axl had the greatest effect on immune activation, whereas systemic deletion of Axl reduced intima due to an increase in apoptosis in vein grafts. Primary smooth muscle cells isolated from Axl knockout mice had reduced proinflammatory responses by prevention of the STAT1 pathway. The absence of Axl increased suppressor of cytokine signaling (SOCS)1 expression in smooth muscle cells, a major inhibitory protein for STAT1. Ultrasound imaging suggested that vascular depletion of Axl reduced vein graft stiffness. Axl expression determined the STAT1-SOCS1 balance in vein graft intima and progression of the remodeling. The results of this investigation demonstrate that Axl promotes STAT1 signaling via inhibition of SOCS1 in activated smooth muscle cells in vein graft remodeling.


Assuntos
Músculo Liso Vascular/imunologia , Miócitos de Músculo Liso/imunologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Fator de Transcrição STAT1/imunologia , Proteínas Supressoras da Sinalização de Citocina/imunologia , Remodelação Vascular/imunologia , Rigidez Vascular/imunologia , Animais , Aorta/citologia , Apoptose , Artérias Carótidas/imunologia , Artérias Carótidas/metabolismo , Artérias Carótidas/cirurgia , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Transcriptoma , Túnica Íntima/imunologia , Túnica Íntima/metabolismo , Veia Cava Inferior/imunologia , Veia Cava Inferior/metabolismo , Veia Cava Inferior/transplante , Receptor Tirosina Quinase Axl
17.
J Clin Invest ; 124(2): 543-52, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24463452

RESUMO

Th cells are the major effector cells in transplant rejection and can be divided into Th1, Th2, Th17, and Treg subsets. Th differentiation is controlled by transcription factor expression, which is driven by positive and negative cytokine and chemokine stimuli at the time of T cell activation. Here we discovered that chemokine platelet factor 4 (PF4) is a negative regulator of Th17 differentiation. PF4-deficient and platelet-deficient mice had exaggerated immune responses to cardiac transplantation, including increased numbers of infiltrating Th17 cells and increased plasma IL-17. Although PF4 has been described as a platelet-specific molecule, we found that activated T cells also express PF4. Furthermore, bone marrow transplantation experiments revealed that T cell-derived PF4 contributes to a restriction in Th17 differentiation. Taken together, the results of this study demonstrate that PF4 is a key regulator of Th cell development that is necessary to limit Th17 differentiation. These data likely will impact our understanding of platelet-dependent regulation of T cell development, which is important in many diseases, in addition to transplantation.


Assuntos
Rejeição de Enxerto/metabolismo , Transplante de Coração , Fator Plaquetário 4/metabolismo , Células Th17/citologia , Animais , Plaquetas/citologia , Células da Medula Óssea/citologia , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular , Ensaio de Imunoadsorção Enzimática , Homeostase , Humanos , Interleucina-17/sangue , Células Jurkat , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes/metabolismo , Fatores de Tempo , Transgenes
18.
J Acquir Immune Defic Syndr ; 65(5): 510-6, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24220290

RESUMO

BACKGROUND: Thrombocytopenia is a known consequence of HIV infection, and decreased production of platelets has been previously implicated in the pathogenesis of platelet decline during asymptomatic infection. Thrombopoietin (THPO) drives platelet production by stimulating the maturation of bone marrow megakaryocytes and can be transcriptionally downregulated by cytokines that are increased during infection such as transforming growth factor ß (TGFß) and platelet factor 4 (pf4). DESIGN: To determine whether transcriptional downregulation of THPO contributed to decreased platelet production during asymptomatic infection in the simian immunodeficiency virus (SIV)/macaque model of HIV, we compared hepatic THPO mRNA levels to platelet number and megakaryocyte density. To identify potential inhibitory factors that decrease THPO transcription during asymptomatic infection, we measured TGFß and pf4 plasma levels. To determine whether combined antiretroviral therapy (cART) could correct platelet decline by altering cytokine levels, we measured TGFß and pf4 in cART-treated SIV-infected macaques and compared these values to cART-untreated SIV-infected macaques. RESULTS: Hepatic THPO transcription was downregulated during asymptomatic SIV infection concurrent with platelet decline. Hepatic THPO mRNA levels correlated with bone marrow megakaryocyte density. In contrast, plasma TGFß levels were inversely correlated with hepatic THPO transcription and bone marrow megakaryocyte density. With cART treatment, plasma TGFß levels and platelet count returned to values similar to those in uninfected macaques. CONCLUSIONS: TGFß-mediated downregulation of hepatic THPO may lead to decline in platelet number during asymptomatic SIV infection, and cART may prevent platelet decline by normalizing plasma TGFß levels.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Trombocitopenia , Trombopoese , Trombopoetina/biossíntese , Fator de Crescimento Transformador beta/metabolismo , Animais , Antirretrovirais/uso terapêutico , Doenças Assintomáticas , Regulação para Baixo , Perfilação da Expressão Gênica , Fígado/patologia , Macaca nemestrina , Masculino , Megacariócitos/fisiologia , Contagem de Plaquetas , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Trombopoetina/sangue , Resultado do Tratamento
19.
J Infect Dis ; 208(6): 874-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23852120

RESUMO

Platelets are key participants in innate immune responses to pathogens. As a decrease in circulating platelet count is one of the initial hematologic indicators of human immunodeficiency virus (HIV) infection, we sought to determine whether decline in platelet number during acute infection results from decreased production, increased antibody-mediated destruction, or increased platelet activation in a simian immunodeficiency virus (SIV)/macaque model. During acute SIV infection, circulating platelets were activated with increased surface expression of P-selection, CD40L and major histocompatibility complex class I. Platelet production was maintained and platelet autoantibodies were not detected during acute infection. Concurrent with a decrease in platelet numbers and an increase in circulating monocytes, platelets were found sequestered in platelet-monocyte aggregates, thereby contributing to the decline in platelet counts. Because the majority of circulating CD16(+) monocytes formed complexes with platelets during acute SIV infection, a decreased platelet count may represent platelet participation in the innate immune response to HIV.


Assuntos
Plaquetas/imunologia , Imunidade Inata , Monócitos/imunologia , Ativação Plaquetária , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Animais , Autoanticorpos/imunologia , Plaquetas/virologia , Ligante de CD40/metabolismo , Agregação Celular , Modelos Animais de Doenças , Genes MHC Classe I , Macaca , Masculino , Monócitos/virologia , Selectina-P/metabolismo , Contagem de Plaquetas , Vírus da Imunodeficiência Símia , Suínos
20.
Arterioscler Thromb Vasc Biol ; 33(2): 321-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23202365

RESUMO

OBJECTIVE: Protein inhibitor of activated signal transducer and activator of transcription-1 (PIAS1) is known to function as small ubiquitin-like modifier (SUMO) E3 ligase as well as transrepressor. The aim of the study is to elucidate the regulatory mechanisms for these 2 different functions, especially with respect to endothelial inflammation. METHODS AND RESULTS: The mitogen-activated protein kinase (MAPK)-activated protein kinase-2 is a proinflammatory kinase and phosphorylates PIAS1 at the Ser522 residue. Activation of MAPK-activated protein kinase-2 enhances p53-SUMOylation, but a PIAS1 phosphorylation mutant, PIAS1-S522A, abolished this p53-SUMOylation, suggesting a critical role for PIAS1-S522 phosphorylation in its SUMO ligase activity. Because nuclear p53 can inhibit Kruppel-like factor 2 promoter activity, we investigated the roles for PIAS1 phosphorylation and p53-SUMOylation in the Kruppel-like factor 2 and endothelial NO synthase expression. Both MAPK-activated protein kinase-2 and PIAS1 overexpression increased Kruppel-like factor 2 promoter activity and endothelial NO synthase expression, which were inhibited by expressing a p53-SUMOylation defective mutant, p53-K386R, and PIAS1-S522A. PIAS1-S522A also abolished the anti-inflammatory effect of wild-type PIAS1 in vitro and also in vivo, which was examined by leukocyte rolling in microvessels of skin grafts transduced by adenovirus encoding PIAS1-WT or - S522A mutant. CONCLUSIONS: Our study has identified a novel negative feedback regulatory pathway through which MAPK-activated protein kinase-2 limits endothelial inflammation via the PIAS1 S522 phosphorylation-mediated increase in PIAS1 transrepression and SUMO ligase activity.


Assuntos
Células Endoteliais/enzimologia , Inflamação/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células Cultivadas , Células Endoteliais/imunologia , Ativação Enzimática , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Inflamação/enzimologia , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Migração e Rolagem de Leucócitos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Pele/irrigação sanguínea , Transplante de Pele , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação , Fatores de Tempo , Transfecção , Transplante Autólogo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA