Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nicotine Tob Res ; 25(5): 1047-1051, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36107715

RESUMO

INTRODUCTION: Tobacco smoking is a major public health burden. The mesocortical dopamine system-including the dorsolateral prefrontal cortex (dlPFC)-plays an important role in cognitive function. Dysregulated dopamine signaling in dlPFC is associated with cognitive deficits such as impairments in attention, learning, working memory, and inhibitory control. We recently showed that dlPFC dopamine D2/3-type receptor (D2R) availability was significantly lower in people who smoke than in healthy-controls and that dlPFC amphetamine-induced dopamine release was lower in females who smoke relative to males who smoke and female healthy-controls. However, we did not examine whether the smoking-related dopamine deficits were related to cognitive deficits. AIMS AND METHODS: The goal of this study was to relate dopamine metrics to cognitive performance in people who smoke and healthy-controls. In total 24 (12 female) people who smoke cigarettes and 25 sex- and age-matched healthy-controls participated in two same-day [11C]FLB457 positron emission tomography (PET) scans before and after amphetamine administration. Two outcome measures were calculated-D2R availability (non-displaceable binding potential; BPND) and amphetamine-induced dopamine release (%ΔBPND). Cognition (verbal learning and memory) was assessed with a computerized test from the CogState battery (International Shopping List). RESULTS: People who smoke had significantly worse immediate (p = .04) and delayed (p = .03) recall than healthy-controls. Multiple linear regression revealed that for people who smoke only, lower D2R availability was associated with worse immediate (p = .04) and delayed (p < .001) recall. %ΔBPND was not significantly related to task performance. CONCLUSION: This study demonstrated that lower dlPFC D2R availability in people who smoke is associated with disruptions in cognitive function that may underlie difficulty with resisting smoking. IMPLICATIONS: This is the first study to directly relate dopamine metrics in the prefrontal cortex to cognitive function in people who smoke cigarettes compared to healthy-controls. The current work included a well-characterized subject sample with regards to demographic and smoking variables, as well as a validated neurocognitive test of verbal learning and memory. The findings of this study extend previous literature by relating dopamine metrics to cognition in people who smoke, providing a better understanding of brain-behavior relationships.


Assuntos
Fumar Cigarros , Dopamina , Masculino , Humanos , Feminino , Dopamina/metabolismo , Anfetamina/metabolismo , Anfetamina/farmacologia , Córtex Pré-Frontal/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Aprendizagem Verbal
2.
Brain Behav Immun ; 106: 262-269, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36058419

RESUMO

Immune-brain interactions influence the pathophysiology of addiction. Lipopolysaccharide (LPS)-induced systemic inflammation produces effects on reward-related brain regions and the dopamine system. We previously showed that LPS amplifies dopamine elevation induced by methylphenidate (MP), compared to placebo (PBO), in eight healthy controls. However, the effects of LPS on the dopamine system of tobacco smokers have not been explored. The goal of Study 1 was to replicate previous findings in an independent cohort of tobacco smokers. The goal of Study 2 was to combine tobacco smokers with the aforementioned eight healthy controls to examine the effect of LPS on dopamine elevation in a heterogenous sample for power and effect size determination. Eight smokers were each scanned with [11C]raclopride positron emission tomography three times-at baseline, after administration of LPS (0.8 ng/kg, intravenously) and MP (40 mg, orally), and after administration of PBO and MP, in a double-blind, randomized order. Dopamine elevation was quantified as change in [11C]raclopride binding potential (ΔBPND) from baseline. A repeated-measures ANOVA was conducted to compare LPS and PBO conditions. Smokers and healthy controls were well-matched for demographics, drug dosing, and scanning parameters. In Study 1, MP-induced striatal dopamine elevation was significantly higher following LPS than PBO (p = 0.025, 18 ± 2.9 % vs 13 ± 2.7 %) for smokers. In Study 2, MP-induced striatal dopamine elevation was also significantly higher under LPS than under PBO (p < 0.001, 18 ± 1.6 % vs 11 ± 1.5 %) in the combined sample. Smoking status did not interact with the effect of condition. This is the first study to translate the phenomenon of amplified dopamine elevation after experimental activation of the immune system to an addicted sample which may have implications for drug reinforcement, seeking, and treatment.


Assuntos
Estimulantes do Sistema Nervoso Central , Metilfenidato , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Dopamina/metabolismo , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , Metilfenidato/farmacologia , Tomografia por Emissão de Pósitrons , Racloprida/metabolismo , Racloprida/farmacologia , Fumantes
3.
Nicotine Tob Res ; 24(10): 1597-1606, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35100429

RESUMO

INTRODUCTION: Tobacco smoking is a major public health burden. The first-line pharmacological treatment for tobacco smoking is nicotine replacement therapy (eg, the nicotine patch (NIC)). Nicotine acts on nicotinic-acetylcholine receptors on dopamine terminals to release dopamine in the ventral and dorsal striatum encoding reward and habit formation, respectively. AIMS AND METHODS: To better understand treatment efficacy, a naturalistic experimental design combined with a kinetic model designed to characterize smoking-induced dopamine release in vivo was used. Thirty-five tobacco smokers (16 female) wore a NIC (21 mg, daily) for 1-week and a placebo patch (PBO) for 1-week in a randomized, counter-balanced order. Following 1-week under NIC and then overnight abstinence, smokers participated in a 90-minute [11C]raclopride positron emission tomography scan and smoked a cigarette while in the scanner. Identical procedures were followed for the PBO scan. A time-varying kinetic model was used at the voxel level to model transient dopamine release peaking instantaneously at the start of the stimulus and decaying exponentially. Magnitude and spatial extent of dopamine release were estimated. Smokers were subcategorized by nicotine dependence level and nicotine metabolism rate. RESULTS: Dopamine release magnitude was enhanced by NIC in ventral striatum and diminished by NIC in dorsal striatum. More-dependent smokers activated more voxels than the less-dependent smokers under both conditions. Under PBO, fast metabolizers activated more voxels in ventral striatum and fewer voxels in dorsal striatum compared to slow metabolizers. CONCLUSIONS: These findings demonstrate that the model captured a pattern of transient dopamine responses to cigarette smoking which may be different across smoker subgroup categorizations. IMPLICATIONS: This is the first study to show that NIC alters highly localized patterns of cigarette smoking-induced dopamine release and that levels of nicotine dependence and nicotine clearance rate contribute to these alterations. This current work included a homogeneous subject sample with regards to demographic and smoking variables, as well as a highly sensitive model capable of detecting significant acute dopamine transients. The findings of this study add support to the recent identification of biomarkers for predicting the effect of nicotine replacement therapies on dopamine function which could help refine clinical practice for smoking cessation.


Assuntos
Fumar Cigarros , Receptores Nicotínicos , Abandono do Hábito de Fumar , Tabagismo , Feminino , Humanos , Biomarcadores , Dopamina/metabolismo , Nicotina , Racloprida , Nicotiana/metabolismo , Dispositivos para o Abandono do Uso de Tabaco
4.
Biomaterials ; 277: 121113, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492582

RESUMO

Biomaterial based strategies have been widely explored to preserve and restore the juvenile phenotype of cells of the nucleus pulposus (NP) in degenerated intervertebral discs (IVD). With aging and maturation, NP cells lose their ability to produce necessary extracellular matrix and proteoglycans, accelerating disc degeneration. Previous studies have shown that integrin or syndecan binding peptide motifs from laminin can induce NP cells from degenerative human discs to re-express juvenile NP-specific cell phenotype and biosynthetic activity. Here, we engineered alginate hydrogels to present integrin- and syndecan-binding peptides alone or in combination (cyclic RGD and AG73, respectively) to introduce bioactive features into the alginate gels. We demonstrated human NP cells cultured upon and within alginate hydrogels presented with cRGD and AG73 peptides exhibited higher cell viability, biosynthetic activity, and NP-specific protein expression over alginate alone. Moreover, the combination of the two peptide motifs elicited markers of the NP-specific cell phenotype, including N-Cadherin, despite differences in cell morphology and multicellular cluster formation between 2D and 3D cultures. These results represent a promising step toward understanding how distinct adhesive peptides can be combined to guide NP cell fate. In the future, these insights may be useful to rationally design hydrogels for NP cell-transplantation based therapies for IVD degeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Alginatos , Humanos , Hidrogéis , Integrinas , Peptídeos , Fenótipo , Sindecanas
5.
Drug Alcohol Depend ; 227: 108920, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34399137

RESUMO

BACKGROUND: Dopaminergic mechanisms that may underlie cannabis' reinforcing effects are not well elucidated in humans. This positron emission tomography (PET) imaging study used the dopamine D2/3 receptor antagonist [11C]raclopride and kinetic modelling testing for transient changes in radiotracer uptake to assess the striatal dopamine response to smoked cannabis in a preliminary sample. METHODS: PET emission data were acquired from regular cannabis users (n = 14; 7 M/7 F; 19-32 years old) over 90 min immediately after [11C]raclopride administration (584 ± 95 MBq) as bolus followed by constant infusion (Kbol = 105 min). Participants smoked a cannabis cigarette, using a paced puff protocol, 35 min after scan start. Plasma concentrations of Δ9-THC and metabolites and ratings of subjective "high" were collected during imaging. Striatal dopamine responses were assessed voxelwise with a kinetic model testing for transient reductions in [11C]raclopride binding, linear-parametric neurotransmitter PET (lp-ntPET) (cerebellum as a reference region). RESULTS: Cannabis smoking increased plasma Δ9-THC levels (peak: 0-10 min) and subjective high (peak: 0-30 min). Significant clusters (>16 voxels) modeled by transient reductions in [11C]raclopride binding were identified for all 12 analyzed scans. In total, 26 clusters of significant responses to cannabis were detected, of which 16 were located in the ventral striatum, including at least one ventral striatum cluster in 11 of the 12 analyzed scans. CONCLUSIONS: These preliminary data support the sensitivity of [11C]raclopride PET with analysis of transient changes in radiotracer uptake to detect cannabis smoking-induced dopamine responses. This approach shows future promise to further elucidate roles of mesolimbic dopaminergic signaling in chronic cannabis use. ClinicalTrials.gov Identifier: NCT02817698.


Assuntos
Cannabis , Fumar Maconha , Estriado Ventral , Adulto , Corpo Estriado/diagnóstico por imagem , Dopamina , Humanos , Tomografia por Emissão de Pósitrons , Racloprida , Adulto Jovem
6.
Am J Nucl Med Mol Imaging ; 11(2): 143-153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079641

RESUMO

BACKGROUND: [11C]-Erlotinib is a radiolabeled analogue of a tyrosine kinase inhibitor used to treat non-small cell lung cancer (NSCLC) which expresses specific kinase domain mutations of the epidermal growth factor receptor (EGFR). In this study, 10 subjects with NSCLC and assorted EGFR mutation status underwent a dynamic, multi-bed positron emission tomography (PET) scan using [11C]-erlotinib. Data were analyzed using a variety of quantitative techniques common in PET (graphical methods, kinetic models, and uptake value-based endpoints). Our primary goal was to determine the most reliable imaging endpoint given the need for maintaining minimal patient burden and recognizing the advantage of simple calculations in future trials. RESULTS: Standard uptake values (a semi-quantitative endpoint) were well correlated with both binding potential and volume of distribution (fully quantitative endpoints). Normalized tracer uptake was found to stabilize approximately 60 minutes post tracer injection. Conclusions: The kinetic properties of [11C]-erlotinib varied greatly across subjects. Our novel scanning protocol produced an important dataset which highlights the great heterogeneity of NSCLC and its apparent impact on [11C]-erlotinib kinetics. A lack of correlation between EGFR mutational status and quantitative endpoints appears to be due to disease heterogeneity and low tracer uptake. The most reliable fits of the dynamic data were based on the one-tissue compartmental model which were well correlated with mean SUV. Due to this correlation and good stability at late-time, SUV seems sufficiently well-suited to quantitative imaging of NSCLC lesions in the whole body with [11C]-erlotinib.

7.
Handb Clin Neurol ; 175: 141-165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33008522

RESUMO

Sex differences are present in psychiatric disorders associated with disrupted dopamine function, and thus, sex differences in dopamine neurobiology may underlie these clinical disparities. In this chapter, we review sex differences in the dopaminergic system with a focus on substance use disorders, especially tobacco smoking, as our exemplar disorder. This chapter is organized into five sections describing sex differences in the dopaminergic system: (1) neurobiology, (2) role of sex hormones, (3) genetic underpinnings, (4) cognitive function, and (5) influence on addiction. In each section, we provide an overview of the topic area, summarize sex differences identified to date, highlight addiction research, especially clinical neuroimaging studies, and suggest avenues for future research.


Assuntos
Comportamento Aditivo , Transtornos Relacionados ao Uso de Substâncias , Dopamina , Feminino , Humanos , Masculino , Neurobiologia , Neuroimagem
8.
Neuropsychopharmacology ; 44(13): 2205-2211, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31269510

RESUMO

Sex differences exist in the neurochemical mechanisms underlying tobacco smoking and smoking-related behaviors. Men tend to smoke for the reinforcing effects of nicotine, whereas women tend to smoke for stress and mood regulation, and have a harder time maintaining long-term abstinence. The mesolimbic dopamine (DA) system drives the reinforcing effects of tobacco smoking, whereas the mesocortical DA system-including the dorsolateral prefrontal cortex (dlPFC)-is critical for stress-related cognitive functioning and inhibitory control. This study is the first to investigate dlPFC D2/3-type receptor (D2R) availability and amphetamine-induced cortical DA release in smokers and nonsmokers. Forty-nine subjects (24 tobacco smokers (12 females) and 25 sex- and age-matched nonsmokers) participated in two same-day [11C]FLB457 positron emission tomography (PET) scans before and 3-hours after amphetamine administration (0.4-0.5 mg/kg, PO). D2R availability (non-displaceable binding potential; BPND) was measured pre- and post-amphetamine. The percent fractional change in BPND (%ΔBPND) between pre- and post-amphetamine, an index of DA release, was compared between male and female smokers and nonsmokers. Smokers showed significantly lower dlPFC D2R availability (BPND = 0.77 ± 0.05) than nonsmokers (BPND = 0.92 ± 0.04), p = 0.016, driven by males. Female smokers showed significantly less amphetamine-induced DA release in dlPFC (%ΔBPND = 1.9 ± 3.0%) than male smokers (%ΔBPND = 14.0 ± 4.3%), p < 0.005, and female nonsmokers (%ΔBPND = 9.3 ± 3.3%), p < 0.005. This study shows that in the prefrontal cortex, smokers have lower D2R availability than nonsmokers and that female vs. male smokers have a blunted amphetamine-induced DA release. These findings demonstrate that tobacco smoking differentially affects the mesocortical DA system in men vs. women, suggesting a potential target for gender-specific treatments.


Assuntos
Anfetamina/administração & dosagem , Dopamina/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D2/metabolismo , Caracteres Sexuais , Fumantes , Adulto , Feminino , Humanos , Masculino , Tomografia por Emissão de Pósitrons
9.
Brain Imaging Behav ; 13(2): 314-322, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29071465

RESUMO

The mesocorticolimbic dopamine (DA) circuit, comprising the mesolimbic and mesocortical DA pathways, plays a crucial role in reward, cognitive control, and motivation. The positron emission tomography (PET) radiotracer, [C-11]raclopride, has been used widely to image DA receptors and DA changes in the mesolimbic pathway before and after pharmacological and behavioral challenges. In certain circumstances, properties of traditional kinetic models-used to analyze dynamic PET data-are not well-suited to describing the effects of stimulus-induced DA release. To combat model shortcomings, the authors have advanced a suite of models that characterizes PET data in the presence of time-varying DA release. We review select [C-11]raclopride studies of the striatum during cigarette smoking to illustrate the advantages of such models. DA receptors occur in lower density in the cortex than the striatum. This, as well as higher relative background signal, poses a serious challenge to quantitative PET of DA changes in the mesocortical system. Novel high affinity radioligands [F-18]fallypride and [C-11]FLB457 have been used to image mesocortical DA transmission. Models with time-varying terms may also hold the key to optimizing sensitivity to changes in mesocortical DA. As an illustration, we compare recent PET studies of the effect of stress on cortical DA release. Finally, we consider some challenges and strategies for further optimization of sensitivity of PET to stimulus-induced DA changes throughout the whole brain.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Dopamina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Benzamidas , Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Humanos , Racloprida , Compostos Radiofarmacêuticos , Fatores Sexuais , Fumar
10.
Neuropsychopharmacology ; 43(5): 1052-1058, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28944773

RESUMO

Guanfacine, a noradrenergic alpha2a agonist, reduced tobacco smoking in a 4-week trial and in animal models has been shown to reduce cortical dopamine release, which is critically involved in the reinforcing effect of tobacco smoking. We measured amphetamine-induced extrastriatal dopamine release before and after treatment with guanfacine with [11C]FLB457, a dopamine D2/D3 receptor radiotracer, and positron emission tomography (PET). Sixteen tobacco smokers had one set of [11C]FLB457 PET scans on the same day, one before and one at 2.5-3 h after amphetamine (0.4-0.5 mg/kg, PO). A subset (n=12) then underwent guanfacine treatment (3 mg/day for 3 weeks) and the set of scans were repeated. [11C]FLB457-binding potential (BPND) was measured pre- and post amphetamine in extrastriatal brain regions. The fractional change in BPND after vs before amphetamine (Δ BPND) is an indirect measure of DA release and was compared between the untreated and guanfacine-treated conditions. Guanfacine treatment attenuated amphetamine-induced DA release; however, the change was due to a global 8% decrease in baseline BPND from the untreated to the guanfacine-treated condition. Chronic guanfacine treatment reduced [11C]FLB457 BPND in tobacco smokers, suggesting an increase in dopaminergic tone. Guanfacine-induced normalization of dopamine signaling may be an important mesocortical mechanism contributing to its ability to aid in tobacco smoking cessation.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Dopamina/metabolismo , Guanfacina/farmacologia , Tomografia por Emissão de Pósitrons , Pirrolidinas/metabolismo , Salicilamidas/metabolismo , Fumantes , Adulto , Anfetamina/farmacologia , Radioisótopos de Carbono , Feminino , Humanos , Masculino , Neuroimagem , Ensaio Radioligante , Fatores de Tempo , Adulto Jovem
11.
Curr Opin Behav Sci ; 23: 196-202, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31341936

RESUMO

Converging lines of evidence suggest that men generally smoke for nicotine-related reinforcement, whereas women smoke for non-nicotine factors. Women have more difficulty quitting smoking and are less responsive to nicotine replacement therapies than men, underscoring the importance of examining sex differences in the neurochemical mechanisms underlying nicotine-motivated behavior. We review the recent imaging literature on sex differences in the nicotinic acetylcholine receptor system and in the dopaminergic system in response to nicotine administration and tobacco smoking. We offer an explanation to unify imaging findings related to the dopamine system. We then propose a course of action for future medication development for tobacco smoking addiction.

12.
Nucl Med Biol ; 47: 56-61, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28126682

RESUMO

INTRODUCTION: Erlotinib is a tyrosine kinase inhibitor prescribed for non-small cell lung cancer (NSCLC) patients bearing epidermal growth factor receptor mutations in the kinase domain. The objectives of this study were to (1) establish a human dosimetry profile of [11C]erlotinib and (2) assess the consistency of calculated equivalent dose across species using the same dosimetry model. METHODS: Subjects examined in this multi-species study included: a stage IIIa NSCLC patient, 3 rhesus macaque monkeys, a landrace pig, and 4 athymic nude-Fox1nu mice. [11C]erlotinib PET data of the whole body were acquired dynamically for up to 120min. Regions of interest (ROIs) were manually drawn to extract PET time activity curves (TACs) from identifiable organs. TACs were used to calculate time-integrated activity coefficients (residence times) in each ROI, which were then used to calculate the equivalent dose in OLINDA. Subject data were used to predict the equivalent dose to the organs of a 73.7kg human male. RESULTS: In three of four species, the liver was identified as the organ receiving the highest equivalent dose (critical organ). The mean equivalent doses per unit of injected activity to the liver based on human, monkey, and mouse data were 29.4µSv/MBq, 17.4±6.0µSv/MBq, and 5.27±0.25µSv/MBq, respectively. The critical organ based on the pig data was the gallbladder wall (20.4µSv/MBq) but the liver received a nearly identical equivalent dose (19.5µSv/MBq). CONCLUSIONS: (1) When designing PET studies using [11C]erlotinib, the liver should be considered the critical organ. (2) In organs receiving the greatest equivalent dose, mouse data underestimated the dose in comparison to larger species. However, the effective dose of [11C]erlotinib to the whole body of a 73.7kg man was predicted with good consistency based on mice (3.14±0.05µSv/MBq) or the larger species (3.46±0.25µSv/MBq).


Assuntos
Cloridrato de Erlotinib/química , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Cloridrato de Erlotinib/farmacocinética , Cloridrato de Erlotinib/farmacologia , Feminino , Humanos , Marcação por Isótopo , Neoplasias Pulmonares/diagnóstico por imagem , Macaca mulatta , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Radiometria , Suínos , Distribuição Tecidual
13.
Neuroimage ; 146: 701-714, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27743899

RESUMO

The "linear parametric neurotransmitter PET" (lp-ntPET) model was introduced to capture the time course of transient endogenous neurotransmitter response to drug stimulus from dynamic PET data. We previously used this novel analysis tool to probe the short-lived dopamine (DA) response induced by cigarette smoking in the PET scanner. It allowed us to find a sex difference in the DA signature of cigarette smoking. To make best use of this tool to characterize neurotransmitter response to drug stimulus, the sensitivity of lp-ntPET to detect such responses must be maximized. We designed a series of simulation studies to examine the impact of the following factors on the sensitivity of lp-ntPET using smoking-induced DA release as an example application: tracer delivery protocol, pre-processing for image denoising, timing of the smoking task, duration of the PET scan, and dose of the radiotracer. Our results suggest that a Bolus paradigm could replace a more difficult B/I paradigm without sacrificing the sensitivity of the method. Pre-processing the PET data with the de-noising algorithm HYPR could improve the sensitivity. The optimal timing to start the smoking task is 45min in a 90min scan and 35min in a 75min scan. A mild shortening of the scan time from 90mCi to 75min should be acceptable without loss of sensitivity. We suggest a lower dose limit of a bolus injection at 16mCi to limit underestimation of DA activation. This study established the framework to optimize the experimental design for reaching the full potential of lp-ntPET to detect neurotransmitter responses to drugs or even behavioral tasks.


Assuntos
Mapeamento Encefálico/métodos , Fumar Cigarros/metabolismo , Dopamina/metabolismo , Tomografia por Emissão de Pósitrons , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Modelos Neurológicos , Processamento de Sinais Assistido por Computador , Fumar
14.
Curr Top Behav Neurosci ; 24: 1-17, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25638332

RESUMO

Receptor imaging, including positron emission computed tomography (PET) and single photon emission computed tomography (SPECT), provides a way to measure chemicals of interest, such as receptors, and neurotransmitter fluctuations, in the living human brain. Imaging the neurochemical mechanisms involved in the maintenance and recovery from tobacco smoking has provided insights into critical smoking related brain adaptations. Nicotine, the primary addictive chemical in tobacco smoke, enters the brain, activates beta2-nicotinic acetylcholine receptors (ß2*-nAChRs) and, like most drugs of abuse, elicits dopamine (DA) release in the ventral striatum. Both ß2*-nAChRs and DA signaling are critical neurosubstrates underlying tobacco smoking behaviors and dependence and have been studied extensively with PET and SPECT brain imaging. We review the imaging literature on these topics and describe how brain imaging has helped inform the treatment of tobacco smoking.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Nicotina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores Nicotínicos/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Encéfalo/efeitos dos fármacos , Humanos , Fumar
15.
J Cereb Blood Flow Metab ; 35(4): 623-9, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25564239

RESUMO

Detecting fluctuations in synaptic dopamine levels in extrastriatal brain regions with [(11)C]FLB 457 and positron emission tomography (PET) is a valuable tool for studying dopaminergic dysfunction in psychiatric disorders. The evaluation of reference region modeling approaches would eliminate the need to obtain arterial input function data. Our goal was to explore the use of reference region models to estimate amphetamine-induced changes in [(11)C]FLB 457 dopamine D2/D3 binding. Six healthy tobacco smokers were imaged with [(11)C]FLB 457 at baseline and at 3 hours after amphetamine (0.4 to 0.5 mg/kg, per os) administration. Simplified reference tissue models, SRTM and SRTM2, were evaluated against the 2-tissue compartmental model (2TC) to estimate [(11)C]FLB 457 binding in extrastriatal regions of interest (ROIs), using the cerebellum as a reference region. No changes in distribution volume were observed in the cerebellum between scan conditions. SRTM and SRTM2 underestimated binding, compared with 2TC, in ROIs by 26% and 9%, respectively, with consistent bias between the baseline and postamphetamine scans. Postamphetamine, [(11)C]FLB 457 binding significantly decreased across several brain regions as measured with SRTM and SRTM2; no significant change was detected with 2TC. These data support the sensitivity of [(11)C]FLB 457 for measuring amphetamine-induced dopamine release in extrastriatal regions with SRTM and SRTM2.


Assuntos
Anfetamina/farmacologia , Dopaminérgicos/farmacologia , Tomografia por Emissão de Pósitrons , Pirrolidinas/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Salicilamidas/metabolismo , Adulto , Anfetamina/administração & dosagem , Anfetamina/sangue , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dopaminérgicos/administração & dosagem , Dopaminérgicos/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Pirrolidinas/análise , Salicilamidas/análise , Fumar/metabolismo
16.
J Neurosci ; 34(50): 16851-5, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25505336

RESUMO

Cigarette smoking is a major public health danger. Women and men smoke for different reasons and cessation treatments, such as the nicotine patch, are preferentially beneficial to men. The biological substrates of these sex differences are unknown. Earlier PET studies reported conflicting findings but were each hampered by experimental and/or analytical limitations. Our new image analysis technique, lp-ntPET (Normandin et al., 2012; Morris et al., 2013; Kim et al., 2014), has been optimized for capturing brief (lasting only minutes) and highly localized dopaminergic events in dynamic PET data. We coupled our analysis technique with high-resolution brain scanning and high-frequency motion correction to create the optimal experiment for capturing and characterizing the effects of smoking on the mesolimbic dopamine system in humans. Our main finding is that male smokers smoking in the PET scanner activate dopamine in the right ventral striatum during smoking but female smokers do not. This finding-men activating more ventrally than women-is consistent with the established notion that men smoke for the reinforcing drug effect of cigarettes whereas women smoke for other reasons, such as mood regulation and cue reactivity. lp-ntPET analysis produces a novel multidimensional endpoint: voxel-level temporal patterns of neurotransmitter release ("DA movies") in individual subjects. By examining these endpoints quantitatively, we demonstrate that the timing of dopaminergic responses to cigarette smoking differs between men and women. Men respond consistently and rapidly in the ventral striatum whereas women respond faster in a discrete subregion of the dorsal putamen.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Dopamina/metabolismo , Caracteres Sexuais , Fumar/metabolismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Adulto Jovem
17.
Hum Brain Mapp ; 35(9): 4876-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24700424

RESUMO

The "linear parametric neurotransmitter PET" (lp-ntPET) model estimates time variation in endogenous neurotransmitter levels from dynamic PET data. The pattern of dopamine (DA) change over time may be an important element of the brain's response to addictive substances such as cigarettes or alcohol. We have extended the lp-ntPET model from the original region of interest (ROI) - based implementation to be able to apply the model at the voxel level. The resulting endpoint is a dynamic image, or movie, of transient neurotransmitter changes. Simulations were performed to select threshold values to reduce the false positive rate when applied to real (11)C-raclopride PET data. We tested the new voxelwise method on simulated data, and finally, we applied it to (11)C-raclopride PET data of subjects smoking cigarettes in the PET scanner. In simulation, the temporal precision of neurotransmitter response was shown to be similar to that of ROI-based lp-ntPET (standard deviation ∼ 3 min). False positive rates for the voxelwise method were well controlled by combining a statistical threshold (the F-test) with a new spatial (cluster-size) thresholding operation. Sensitivity of detection for the new algorithm was greater than 80% for the case of short-lived DA changes that occur in subregions of the striatum as might be the case with cigarette smoking. Finally, in (11)C-raclopride PET data, DA movies reveal for the first time that different temporal patterns of the DA response to smoking may exist in different subregions of the striatum. These spatiotemporal patterns of neurotransmitter change created by voxelwise lp-ntPET may serve as novel biomarkers for addiction and/or treatment efficacy.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Dopamina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Fumar/metabolismo , Algoritmos , Artefatos , Mapeamento Encefálico/instrumentação , Mapeamento Encefálico/métodos , Radioisótopos de Carbono , Simulação por Computador , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Reações Falso-Positivas , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Racloprida , Compostos Radiofarmacêuticos , Descanso , Fatores de Tempo , Adulto Jovem
18.
Neuropsychopharmacology ; 39(4): 866-74, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24220025

RESUMO

The radiotracer [(11)C]PHNO may have advantages over other dopamine (DA) D2/D3 receptor ligands because, as an agonist, it measures high-affinity, functionally active D2/D3 receptors, whereas the traditionally used radiotracer [(11)C]raclopride measures both high- and low-affinity receptors. Our aim was to take advantage of the strength of [(11)C]PHNO for measuring the small DA signal induced by nicotine, which has been difficult to measure in preclinical and clinical neuroimaging studies. Nicotine- and amphetamine-induced DA release in non-human primates was measured with [(11)C]PHNO and [(11)C]raclopride positron emission tomography (PET) imaging. Seven adult rhesus monkeys were imaged on a FOCUS 220 PET scanner after injection of a bolus of [(11)C]PHNO or [(11)C]raclopride in three conditions: baseline; preinjection of nicotine (0.1 mg/kg bolus+0.08 mg/kg infusion over 30 min); preinjection of amphetamine (0.4 mg/kg, 5 min before radiotracer injection). DA release was measured as change in binding potential (BPND). Nicotine significantly decreased BPND in the caudate (7 ± 8%), the nucleus accumbens (10 ± 7%), and in the globus pallidus (13 ± 15%) measured with [(11)C]PHNO, but did not significantly decrease BPND in the putamen or the substantia nigra or in any region when measured with [(11)C]raclopride. Amphetamine significantly reduced BPND in all regions with both radiotracers. In the striatum, larger amphetamine-induced changes were detected with [(11)C]PHNO compared with [(11)C]raclopride (52-64% vs 33-35%, respectively). We confirmed that [(11)C]PHNO is more sensitive than [(11)C]raclopride to nicotine- and amphetamine-induced DA release. [(11)C]PHNO PET may be more sensitive to measuring tobacco smoking-induced DA release in human tobacco smokers.


Assuntos
Anfetamina/farmacologia , Encéfalo , Estimulantes do Sistema Nervoso Central/farmacologia , Dopamina/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Agonistas de Dopamina/farmacocinética , Antagonistas de Dopamina/farmacocinética , Feminino , Macaca mulatta , Imageamento por Ressonância Magnética , Oxazinas/farmacocinética , Tomografia por Emissão de Pósitrons , Ligação Proteica/efeitos dos fármacos , Racloprida/farmacocinética
19.
J Vis Exp ; (78)2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23963311

RESUMO

We describe experimental and statistical steps for creating dopamine movies of the brain from dynamic PET data. The movies represent minute-to-minute fluctuations of dopamine induced by smoking a cigarette. The smoker is imaged during a natural smoking experience while other possible confounding effects (such as head motion, expectation, novelty, or aversion to smoking repeatedly) are minimized. We present the details of our unique analysis. Conventional methods for PET analysis estimate time-invariant kinetic model parameters which cannot capture short-term fluctuations in neurotransmitter release. Our analysis--yielding a dopamine movie--is based on our work with kinetic models and other decomposition techniques that allow for time-varying parameters. This aspect of the analysis--temporal-variation--is key to our work. Because our model is also linear in parameters, it is practical, computationally, to apply at the voxel level. The analysis technique is comprised of five main steps: pre-processing, modeling, statistical comparison, masking and visualization. Preprocessing is applied to the PET data with a unique 'HYPR' spatial filter that reduces spatial noise but preserves critical temporal information. Modeling identifies the time-varying function that best describes the dopamine effect on 11C-raclopride uptake. The statistical step compares the fit of our (lp-ntPET) model to a conventional model. Masking restricts treatment to those voxels best described by the new model. Visualization maps the dopamine function at each voxel to a color scale and produces a dopamine movie. Interim results and sample dopamine movies of cigarette smoking are presented.


Assuntos
Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Dopamina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Fumar/metabolismo , Radioisótopos de Carbono , Corpo Estriado/química , Dopamina/análise , Antagonistas de Dopamina/farmacocinética , Humanos , Tomografia por Emissão de Pósitrons/instrumentação , Racloprida/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Estatísticas não Paramétricas
20.
Am J Nucl Med Mol Imaging ; 3(3): 247-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23638336

RESUMO

Conventional PET methods to estimate [(11)C]raclopride binding potential (BP ND) assume that endogenous dopamine concentration does not change during the scan time. However, this assumption is purposely violated in studies using pharmacological or behavioral stimuli to invoke acute dopamine release. When the assumption of steady-state dopamine is violated, conventional analysis methods may produce biased or even unusable estimates of BP ND. To illustrate this problem, we examined the effect of scan duration on ΔBP ND estimated by three common analysis methods (simplified reference tissue model, Logan graphical reference method, and equilibrium analysis) applied to simulated and experimental single-scan activation studies. The activation - dopamine release - in both the simulated and experimental studies was brief. Simulations showed ΔBP ND to be highly dependent on the window of data used to determine BP ND in the activation state. A similar pattern was seen in the data from human smoking studies. No such pattern of ΔBP ND dependence on the window of data used was apparent in simulations where dopamine was held constant. The dependence of ΔBP ND on the duration of data analyzed illustrates the inability of conventional methods to reliably quantify short-lived increases in endogenous dopamine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA