Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7834, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030626

RESUMO

A synthetic lethal relationship exists between disruption of polymerase theta (Polθ), and loss of either 53BP1 or homologous recombination (HR) proteins, including BRCA1; however, the mechanistic basis of these observations are unclear. Here we reveal two distinct mechanisms of Polθ synthetic lethality, identifying dual influences of 1) whether Polθ is lost or inhibited, and 2) the underlying susceptible genotype. Firstly, we find that the sensitivity of BRCA1/2- and 53BP1-deficient cells to Polθ loss, and 53BP1-deficient cells to Polθ inhibition (ART558) requires RAD52, and appropriate reduction of RAD52 can ameliorate these phenotypes. We show that in the absence of Polθ, RAD52 accumulations suppress ssDNA gap-filling in G2/M and encourage MRE11 nuclease accumulation. In contrast, the survival of BRCA1-deficient cells treated with Polθ inhibitor are not restored by RAD52 suppression, and ssDNA gap-filling is prevented by the chemically inhibited polymerase itself. These data define an additional role for Polθ, reveal the mechanism underlying synthetic lethality between 53BP1, BRCA1/2 and Polθ loss, and indicate genotype-dependent Polθ inhibitor mechanisms.


Assuntos
Proteína BRCA1 , Mutações Sintéticas Letais , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Recombinação Homóloga , Reparo do DNA , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , DNA Polimerase teta
2.
Metallomics ; 14(7)2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35689667

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a disease that remains refractory to existing treatments including the nucleoside analogue gemcitabine. In the current study we demonstrate that an organometallic nucleoside analogue, the ferronucleoside 1-(S,Rp), is cytotoxic in a panel of PDAC cell lines including gemcitabine-resistant MIAPaCa2, with IC50 values comparable to cisplatin. Biochemical studies show that the mechanism of action is inhibition of DNA replication, S-phase cell cycle arrest and stalling of DNA-replication forks, which were directly observed at single molecule resolution by DNA-fibre fluorography. In agreement with this, transcriptional changes following treatment with 1-(S,Rp) include activation of three of the four genes (HUS1, RAD1, RAD17) of the 9-1-1 check point complex clamp and two of the three genes (MRE11, NBN) that form the MRN complex as well as activation of multiple downstream targets. Furthermore, there was evidence of phosphorylation of checkpoint kinases 1 and 2 as well as RPA1 and gamma H2AX, all of which are considered biochemical markers of replication stress. Studies in p53-deficient cell lines showed activation of CDKN1A (p21) and GADD45A by 1-(S,Rp) was at least partially independent of p53. In conclusion, because of its potency and activity in gemcitabine-resistant cells, 1-(S,Rp) is a promising candidate molecule for development of new treatments for PDAC.


Assuntos
Replicação do DNA , Nucleosídeos , Neoplasias Pancreáticas , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Metalocenos , Nucleosídeos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Fase S , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas
3.
J Cell Sci ; 135(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35748225

RESUMO

Commonly applied super-resolution light microscopies have provided insight into subcellular processes at the nanoscale. However, imaging depth, speed, throughput and cost remain significant challenges, limiting the numbers of three-dimensional (3D) nanoscale processes that can be investigated and the number of laboratories able to undertake such analysis. Expansion microscopy (ExM) solves many of these limitations, but its application to imaging nuclear processes has been constrained by concerns of unequal nuclear expansion. Here, we demonstrate the conditions for isotropic expansion of the nucleus at a resolution equal to or better than 120-130 nm (pre-expansion). Using the DNA damage response proteins BRCA1, 53BP1 (also known as TP53BP1) and RAD51 as exemplars, we quantitatively describe the 3D nanoscale organisation of over 50,000 DNA damage response structures. We demonstrate the ability to assess chromatin-regulated events and show the simultaneous assessment of four elements. This study thus demonstrates how ExM can contribute to the investigation of nanoscale nuclear processes.


Assuntos
Cromatina , Microscopia , Núcleo Celular , Microscopia/métodos
5.
Semin Cell Dev Biol ; 113: 14-26, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32653304

RESUMO

In response to replication hindrances, DNA replication forks frequently stall and are remodelled into a four-way junction. In such a structure the annealed nascent strand is thought to resemble a DNA double-strand break and remodelled forks are vulnerable to nuclease attack by MRE11 and DNA2. Proteins that promote the recruitment, loading and stabilisation of RAD51 onto single-stranded DNA for homology search and strand exchange in homologous recombination (HR) repair and inter-strand cross-link repair also act to set up RAD51-mediated protection of nascent DNA at stalled replication forks. However, despite the similarities of these pathways, several lines of evidence indicate that fork protection is not simply analogous to the RAD51 loading step of HR. Protection of stalled forks not only requires separate functions of a number of recombination proteins, but also utilises nucleases important for the resection steps of HR in alternative ways. Here we discuss how fork protection arises and how its differences with HR give insights into the differing contexts of these two pathways.


Assuntos
Dano ao DNA/genética , Replicação do DNA/genética , Instabilidade Genômica/genética , Recombinação Homóloga/genética , Humanos
6.
Mol Cell Oncol ; 6(6): e1656500, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31692900

RESUMO

The breast cancer type-1 susceptibility protein (BRCA1) contributes to genome integrity through homologous recombinational DNA repair and by protecting stalled replication forks from nucleolytic degradation. We recently discovered that fork protection requires a conformational change of BRCA1 unimportant to homologous recombination repair, indicating separate roles for BRCA1 in these pathways.

7.
Front Mol Biosci ; 6: 79, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552267

RESUMO

DNA double-strand breaks (DSBs) occur in our cells in the context of chromatin. This type of lesion is toxic, entirely preventing genome continuity and causing cell death or terminal arrest. Several repair mechanisms can act on DNA surrounding a DSB, only some of which carry a low risk of mutation, so that which repair process is utilized is critical to the stability of genetic material of cells. A key component of repair outcome is the degree of DNA resection directed to either side of the break site. This in turn determines the subsequent forms of repair in which DNA homology plays a part. Here we will focus on chromatin and chromatin-bound complexes which constitute the "mountains" that block resection, with a particular focus on how the breast and ovarian cancer predisposition protein-1 (BRCA1) contributes to repair outcomes through overcoming these blocks.

8.
Nature ; 571(7766): 521-527, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31270457

RESUMO

The integrity of genomes is constantly threatened by problems encountered by the replication fork. BRCA1, BRCA2 and a subset of Fanconi anaemia proteins protect stalled replication forks from degradation by nucleases, through pathways that involve RAD51. The contribution and regulation of BRCA1 in replication fork protection, and how this role relates to its role in homologous recombination, is unclear. Here we show that BRCA1 in complex with BARD1, and not the canonical BRCA1-PALB2 interaction, is required for fork protection. BRCA1-BARD1 is regulated by a conformational change mediated by the phosphorylation-directed prolyl isomerase PIN1. PIN1 activity enhances BRCA1-BARD1 interaction with RAD51, thereby increasing the presence of RAD51 at stalled replication structures. We identify genetic variants of BRCA1-BARD1 in patients with cancer that exhibit poor protection of nascent strands but retain homologous recombination proficiency, thus defining domains of BRCA1-BARD1 that are required for fork protection and associated with cancer development. Together, these findings reveal a BRCA1-mediated pathway that governs replication fork protection.


Assuntos
Proteína BRCA1/química , Proteína BRCA1/metabolismo , Replicação do DNA , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína BRCA1/genética , Linhagem Celular Tumoral , Replicação do DNA/genética , Instabilidade Genômica/genética , Humanos , Isomerismo , Mutação , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Rad51 Recombinase/metabolismo
9.
Genes Dev ; 33(5-6): 333-347, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30796017

RESUMO

SUMOylation (small ubiquitin-like modifier) in the DNA double-strand break (DSB) response regulates recruitment, activity, and clearance of repair factors. However, our understanding of a role for deSUMOylation in this process is limited. Here we identify different mechanistic roles for deSUMOylation in homologous recombination (HR) and nonhomologous end joining (NHEJ) through the investigation of the deSUMOylase SENP2. We found that regulated deSUMOylation of MDC1 prevents excessive SUMOylation and its RNF4-VCP mediated clearance from DSBs, thereby promoting NHEJ. In contrast, we show that HR is differentially sensitive to SUMO availability and SENP2 activity is needed to provide SUMO. SENP2 is amplified as part of the chromosome 3q amplification in many cancers. Increased SENP2 expression prolongs MDC1 focus retention and increases NHEJ and radioresistance. Collectively, our data reveal that deSUMOylation differentially primes cells for responding to DSBs and demonstrates the ability of SENP2 to tune DSB repair responses.


Assuntos
Cisteína Endopeptidases/metabolismo , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Recombinação Homóloga/genética , Sumoilação/genética , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Cisteína Endopeptidases/genética , Quebras de DNA de Cadeia Dupla , Células HEK293 , Células HeLa , Humanos , Raios Infravermelhos , Proteínas Nucleares/metabolismo , Tolerância a Radiação/genética , Transdução de Sinais/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteína com Valosina/metabolismo
10.
J Biol Chem ; 294(2): 424-436, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30373771

RESUMO

Ubiquitin-specific proteases (USPs) reverse ubiquitination and regulate virtually all cellular processes. Defined noncatalytic domains in USP4 and USP15 are known to interact with E3 ligases and substrate recruitment factors. No such interactions have been reported for these domains in the paralog USP11, a key regulator of DNA double-strand break repair by homologous recombination. We hypothesized that USP11 domains adjacent to its protease domain harbor unique peptide-binding sites. Here, using a next-generation phage display (NGPD) strategy, combining phage display library screening with next-generation sequencing, we discovered unique USP11-interacting peptide motifs. Isothermal titration calorimetry disclosed that the highest affinity peptides (KD of ∼10 µm) exhibit exclusive selectivity for USP11 over USP4 and USP15 in vitro Furthermore, a crystal structure of a USP11-peptide complex revealed a previously unknown binding site in USP11's noncatalytic ubiquitin-like (UBL) region. This site interacted with a helical motif and is absent in USP4 and USP15. Reporter assays using USP11-WT versus a binding pocket-deficient double mutant disclosed that this binding site modulates USP11's function in homologous recombination-mediated DNA repair. The highest affinity USP11 peptide binder fused to a cellular delivery sequence induced significant nuclear localization and cell cycle arrest in S phase, affecting the viability of different mammalian cell lines. The USP11 peptide ligands and the paralog-specific functional site in USP11 identified here provide a framework for the development of new biochemical tools and therapeutic agents. We propose that an NGPD-based strategy for identifying interacting peptides may be applied also to other cellular targets.


Assuntos
Peptídeos/química , Peptídeos/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Reparo do DNA , Recombinação Homóloga , Humanos , Cinética , Ligantes , Camundongos , Dados de Sequência Molecular , Peptídeos/genética , Domínios Proteicos , Tioléster Hidrolases/genética , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitinação
11.
Nat Commun ; 9(1): 229, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335415

RESUMO

BRCA1-BARD1-catalyzed ubiquitination of histone H2A is an important regulator of the DNA damage response, priming chromatin for repair by homologous recombination. However, no specific deubiquitinating enzymes (DUBs) are known to antagonize this function. Here we identify ubiquitin specific protease-48 (USP48) as a H2A DUB, specific for the C-terminal BRCA1 ubiquitination site. Detailed biochemical analysis shows that an auxiliary ubiquitin, an additional ubiquitin that itself does not get cleaved, modulates USP48 activity, which has possible implications for its regulation in vivo. In cells we reveal that USP48 antagonizes BRCA1 E3 ligase function and in BRCA1-proficient cells loss of USP48 results in positioning 53BP1 further from the break site and in extended resection lengths. USP48 repression confers a survival benefit to cells treated with camptothecin and its activity acts to restrain gene conversion and mutagenic single-strand annealing. We propose that USP48 promotes genome stability by antagonizing BRCA1 E3 ligase function.


Assuntos
Proteína BRCA1/metabolismo , Histonas/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Animais , Proteína BRCA1/genética , Sequência de Bases , Linhagem Celular Tumoral , Células Cultivadas , Reparo do DNA , Células HeLa , Humanos , Cinética , Camundongos Knockout , Interferência de RNA , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
12.
Nucleus ; 8(2): 116-125, 2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-28032817

RESUMO

The protein product of the breast and ovarian cancer gene, BRCA1, is part of an obligate heterodimer with BARD1. Together these RING bearing proteins act as an E3 ubiquitin ligase. Several functions have been attributed to BRCA1 that contribute to genome integrity but which of these, if any, require this enzymatic function was unclear. Here we review recent studies clarifying the role of BRCA1 E3 ubiquitin ligase in DNA repair. Perhaps the most surprising finding is the narrow range of BRCA1 functions this activity relates to. Remarkably ligase activity promotes chromatin remodelling and 53BP1 positioning through the remodeller SMARCAD1, but the activity is dispensable for the cellular survival in response to cisplatin or replication stressing agents. Implications for therapy response and tumor susceptibility are discussed.


Assuntos
Proteína BRCA1/metabolismo , Reparo do DNA , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteína BRCA1/química , Cromatina/metabolismo , Inativação Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
13.
Nat Struct Mol Biol ; 23(7): 647-55, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27239795

RESUMO

The opposing activities of 53BP1 and BRCA1 influence pathway choice in DNA double-strand-break repair. How BRCA1 counteracts the inhibitory effect of 53BP1 on DNA resection and homologous recombination is unknown. Here we identify the site of BRCA1-BARD1 required for priming ubiquitin transfer from E2∼ubiquitin and demonstrate that BRCA1-BARD1's ubiquitin ligase activity is required for repositioning 53BP1 on damaged chromatin. We confirm H2A ubiquitination by BRCA1-BARD1 and show that an H2A-ubiquitin fusion protein promotes DNA resection and repair in BARD1-deficient cells. BRCA1-BARD1's function in homologous recombination requires the chromatin remodeler SMARCAD1. SMARCAD1 binding to H2A-ubiquitin and optimal localization to sites of damage and activity in DNA repair requires its ubiquitin-binding CUE domains. SMARCAD1 is required for 53BP1 repositioning, and the need for SMARCAD1 in olaparib or camptothecin resistance is alleviated by 53BP1 loss. Thus, BRCA1-BARD1 ligase activity and subsequent SMARCAD1-dependent chromatin remodeling are critical regulators of DNA repair.


Assuntos
Proteína BRCA1/genética , Cromatina/metabolismo , DNA Helicases/genética , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Reparo de DNA por Recombinação , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Proteína BRCA1/metabolismo , Sítios de Ligação , Camptotecina/farmacologia , Cromatina/química , Cromatina/efeitos dos fármacos , Clonagem Molecular , Quebras de DNA de Cadeia Dupla , Clivagem do DNA/efeitos dos fármacos , DNA Helicases/metabolismo , DNA de Neoplasias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Moleculares , Ftalazinas/farmacologia , Piperazinas/farmacologia , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
14.
Epigenetics ; 10(12): 1121-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26727311

RESUMO

Germline pathogenic mutations in BRCA1 increase risk of developing breast cancer. Screening for mutations in BRCA1 frequently identifies sequence variants of unknown pathogenicity and recent work has aimed to develop methods for determining pathogenicity. We previously observed that tumor DNA methylation can differentiate BRCA1-mutated from BRCA1-wild type tumors. We hypothesized that we could predict pathogenicity of variants based on DNA methylation profiles of tumors that had arisen in carriers of unclassified variants. We selected 150 FFPE breast tumor DNA samples [47 BRCA1 pathogenic mutation carriers, 65 BRCAx (BRCA1-wild type), 38 BRCA1 test variants] and analyzed a subset (n=54) using the Illumina 450K methylation platform, using the remaining samples for bisulphite pyrosequencing validation. Three validated markers (BACH2, C8orf31, and LOC654342) were combined with sequence bioinformatics in a model to predict pathogenicity of 27 variants (independent test set). Predictions were compared with standard multifactorial likelihood analysis. Prediction was consistent for c.5194-12G>A (IVS 19-12 G>A) (P>0.99); 13 variants were considered not pathogenic or likely not pathogenic using both approaches. We conclude that tumor DNA methylation data alone has potential to be used in prediction of BRCA1 variant pathogenicity but is not independent of estrogen receptor status and grade, which are used in current multifactorial models to predict pathogenicity.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA , Genes BRCA1 , Predisposição Genética para Doença , Neoplasias da Mama/patologia , Biologia Computacional , Análise Mutacional de DNA , Feminino , Marcadores Genéticos , Humanos
16.
EMBO J ; 31(19): 3918-34, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22909820

RESUMO

The regulation of Ubiquitin (Ub) conjugates generated by the complex network of proteins that promote the mammalian DNA double-strand break (DSB) response is not fully understood. We show here that the Ub protease POH1/rpn11/PSMD14 resident in the 19S proteasome regulatory particle is required for processing poly-Ub formed in the DSB response. Proteasome activity is required to restrict tudor domain-dependent 53BP1 accumulation at sites of DNA damage. This occurs both through antagonism of RNF8/RNF168-mediated lysine 63-linked poly-Ub and through the promotion of JMJD2A retention on chromatin. Consistent with this role POH1 acts in opposition to RNF8/RNF168 to modulate end-joining DNA repair. Additionally, POH1 acts independently of 53BP1 in homologous recombination repair to promote RAD51 loading. Accordingly, POH1-deficient cells are sensitive to DNA damaging agents. These data demonstrate that proteasomal POH1 is a key de-ubiquitinating enzyme that regulates ubiquitin conjugates generated in response to damage and that several aspects of the DSB response are regulated by the proteasome.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Transativadores/metabolismo , Linhagem Celular , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Poliubiquitina/metabolismo , Rad51 Recombinase/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases/metabolismo
17.
Cancer Cell ; 20(6): 797-809, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22172724

RESUMO

Hereditary breast cancers are frequently caused by germline BRCA1 mutations. The BRCA1(C61G) mutation in the BRCA1 RING domain is a common pathogenic missense variant, which reduces BRCA1/BARD1 heterodimerization and abrogates its ubiquitin ligase activity. To investigate the role of BRCA1 RING function in tumor suppression and therapy response, we introduced the Brca1(C61G) mutation in a conditional mouse model for BRCA1-associated breast cancer. In contrast to BRCA1-deficient mammary carcinomas, tumors carrying the Brca1(C61G) mutation responded poorly to platinum drugs and PARP inhibition and rapidly developed resistance while retaining the Brca1(C61G) mutation. These findings point to hypomorphic activity of the BRCA1-C61G protein that, although unable to prevent tumor development, affects response to therapy.


Assuntos
Proteína BRCA1/genética , Resistencia a Medicamentos Antineoplásicos , Animais , Antineoplásicos/uso terapêutico , Apoptose , Proteína BRCA1/metabolismo , Carcinoma/tratamento farmacológico , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patologia , Proliferação de Células , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Técnicas de Inativação de Genes , Instabilidade Genômica , Queratina-8/metabolismo , Masculino , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Transplante de Neoplasias , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Estrutura Terciária de Proteína , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Transplante Heterólogo , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Cancer Res ; 70(10): 3861-3, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20406985

RESUMO

In mammalian cells the accumulation of repair proteins to double-strand breaks is a phosphorylation- and ubiquitylation-regulated process. Some of the genes that encode the kinases and ubiquitin ligases in this pathway are cancer predisposition genes, most prominently the breast cancer predisposition gene BRCA1, which encodes a ubiquitin ligase. How BRCA1 ligase activity was regulated following DNA damage was poorly understood. In this review I summarize new data that show a third post-translational modification, by the small ubiquitin like modifier SUMO, is part of the same cascade, enabling and activating DNA damage-regulated processes, including the BRCA1 ligase activity.


Assuntos
Proteína BRCA1/metabolismo , Dano ao DNA , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Humanos , Ubiquitinação
19.
Biochem Soc Trans ; 38(Pt 1): 92-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20074042

RESUMO

Modification by SUMOs (small ubiquitin-related modifiers) is largely transient and considered to alter protein function through altered protein-protein interactions. These modifications are significant regulators of the response to DNA damage in eukaryotic model organisms and SUMOylation affects a large number of proteins in mammalian cells, including several proteins involved in the response to genomic lesions [Golebiowski, Matic, Tatham, Cole, Yin, Nakamura, Cox, Barton, Mann and Hay (2009) Sci. Signaling 2, ra24]. Furthermore, recent work [Morris, Boutell, Keppler, Densham, Weekes, Alamshah, Butler, Galanty, Pangon, Kiuchi, Ng and Solomon (2009) Nature 462, 886-890; Galanty, Belotserkovskaya, Coates, Polo, Miller and Jackson (2009) Nature 462, 935-939] has revealed the involvement of the SUMO cascade in the BRCA1 (breast-cancer susceptibility gene 1) pathway response after DNA damage. The present review examines roles described for the SUMO pathway in the way mammalian cells respond to genotoxic stress.


Assuntos
Dano ao DNA , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Proteína BRCA1/metabolismo , Doença/genética , Humanos , Proteínas Inibidoras de STAT Ativados/metabolismo , Recombinação Genética , Transdução de Sinais/fisiologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
20.
Nature ; 462(7275): 886-90, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20016594

RESUMO

Mutations in BRCA1 are associated with a high risk of breast and ovarian cancer. BRCA1 participates in the DNA damage response and acts as a ubiquitin ligase. However, its regulation remains poorly understood. Here we report that BRCA1 is modified by small ubiquitin-like modifier (SUMO) in response to genotoxic stress, and co-localizes at sites of DNA damage with SUMO1, SUMO2/3 and the SUMO-conjugating enzyme Ubc9. PIAS SUMO E3 ligases co-localize with and modulate SUMO modification of BRCA1, and are required for BRCA1 ubiquitin ligase activity in cells. In vitro SUMO modification of the BRCA1/BARD1 heterodimer greatly increases its ligase activity, identifying it as a SUMO-regulated ubiquitin ligase (SRUbL). Further, PIAS SUMO ligases are required for complete accumulation of double-stranded DNA (dsDNA) damage-repair proteins subsequent to RNF8 accrual, and for proficient double-strand break repair. These data demonstrate that the SUMOylation pathway plays a significant role in mammalian DNA damage response.


Assuntos
Proteína BRCA1/metabolismo , Dano ao DNA , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Células HeLa , Histonas/metabolismo , Humanos , Proteínas Inibidoras de STAT Ativados/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA