Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cancer Lett ; 586: 216633, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38281663

RESUMO

Primary cutaneous melanoma is the most lethal of all skin neoplasms and its incidence is increasing. Clinical management of advanced melanoma in the last decade has been revolutionised by the availability of immunotherapies and targeted therapies, used alone and in combination. This article summarizes advances in the treatment of late-stage melanoma including use of protein kinase inhibitors, antibody-based immune checkpoint inhibitors, adoptive immunotherapy, vaccines and more recently, small molecules and peptidomimetics as emerging immunoregulatory agents.


Assuntos
Melanoma , Peptidomiméticos , Neoplasias Cutâneas , Humanos , Melanoma/terapia , Neoplasias Cutâneas/terapia , Peptidomiméticos/farmacologia , Peptidomiméticos/uso terapêutico , Imunoterapia , Imunoterapia Adotiva , Terapia de Alvo Molecular
3.
Nutr Metab Cardiovasc Dis ; 32(10): 2439-2449, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36096978

RESUMO

BACKGROUND AND AIMS: Betaine supplementation has been shown to enhance hepatic lipid metabolism in obese mice and improve exercise performance in healthy populations. We examined effects of betaine supplementation, alone or in combination with treadmill exercise, on the metabolic consequences of high fat diet (HFD)-induced obesity in mice. METHODS AND RESULTS: Male C57BL/6 J mice were fed chow or HFD. After 15 weeks, HFD mice were split into: HFD, HFD with betaine (1.5% w/v), HFD with treadmill exercise, and HFD with both betaine and exercise (15 m/min for 45min, 6 days/week; n = 12/group) for 10 weeks. Compared to HFD mice, body weight was significantly reduced in exercise and exercise-betaine mice, but not in mice given betaine alone. Similarly, adiposity was reduced by exercise but not by betaine alone. HFD-induced glucose intolerance was slightly improved by exercise, but not with betaine alone. Significantly greater benefits were observed in exercise-betaine mice, compared to exercise alone, such that GTT-outcomes were similar to controls. This was associated with reduced insulin levels during ipGTT, suggesting enhanced insulin sensitivity. Modest benefits were observed in fatty acid metabolism genes in skeletal muscle, whilst limited effects were observed in the liver. HFD-induced increases in hepatic Mpc1 (mitochondrial pyruvate carrier 1) were normalized by all treatments, suggesting potential links to altered glucose metabolism. CONCLUSIONS: Our data show that drinking 1.5% betaine was sufficient to augment metabolic benefits of exercise in obese mice. These processes appear to be facilitated by altered glucose metabolism, with limited effects on hepatic lipid metabolism.


Assuntos
Resistência à Insulina , Insulinas , Animais , Betaína/metabolismo , Betaína/farmacologia , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Glucose , Insulinas/metabolismo , Insulinas/farmacologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/farmacologia , Obesidade/metabolismo
4.
Genome Med ; 14(1): 67, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739588

RESUMO

BACKGROUND: The incidence of non-alcoholic fatty liver disease (NAFLD)-associated hepatocellular carcinoma (HCC) is increasing worldwide, but the steps in precancerous hepatocytes which lead to HCC driver mutations are not well understood. Here we provide evidence that metabolically driven histone hyperacetylation in steatotic hepatocytes can increase DNA damage to initiate carcinogenesis. METHODS: Global epigenetic state was assessed in liver samples from high-fat diet or high-fructose diet rodent models, as well as in cultured immortalized human hepatocytes (IHH cells). The mechanisms linking steatosis, histone acetylation and DNA damage were investigated by computational metabolic modelling as well as through manipulation of IHH cells with metabolic and epigenetic inhibitors. Chromatin immunoprecipitation and next-generation sequencing (ChIP-seq) and transcriptome (RNA-seq) analyses were performed on IHH cells. Mutation locations and patterns were compared between the IHH cell model and genome sequence data from preneoplastic fatty liver samples from patients with alcohol-related liver disease and NAFLD. RESULTS: Genome-wide histone acetylation was increased in steatotic livers of rodents fed high-fructose or high-fat diet. In vitro, steatosis relaxed chromatin and increased DNA damage marker γH2AX, which was reversed by inhibiting acetyl-CoA production. Steatosis-associated acetylation and γH2AX were enriched at gene clusters in telomere-proximal regions which contained HCC tumour suppressors in hepatocytes and human fatty livers. Regions of metabolically driven epigenetic change also had increased levels of DNA mutation in non-cancerous tissue from NAFLD and alcohol-related liver disease patients. Finally, genome-scale network modelling indicated that redox balance could be a key contributor to this mechanism. CONCLUSIONS: Abnormal histone hyperacetylation facilitates DNA damage in steatotic hepatocytes and is a potential initiating event in hepatocellular carcinogenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Acetilcoenzima A/metabolismo , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Dieta Hiperlipídica/efeitos adversos , Epigenoma , Frutose/efeitos adversos , Frutose/metabolismo , Histonas/metabolismo , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética
5.
Eur J Nutr ; 61(7): 3741-3753, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35708759

RESUMO

PURPOSE: Emerging evidence from rodent studies suggests that high-fat-diet (HFD)-induced obesity is characterized by increased oxidative damage in sperm and testis. However, interventions using micronutrient supplementation to mitigate oxidative damage in obesity have not been extensively studied. This study aimed to investigate the effect of an antioxidant-based micronutrient supplement (added folate, vitamin B6, choline, betaine, and zinc) on sperm and testicular oxidative damage in HFD-fed male Sprague Dawley rats. METHODS: Rats (3-weeks-old, 12/group) were weaned onto control (C) or HFD (H) or these diets with micronutrient supplement (CS; HS); sperm and testis were harvested at 30.5 weeks. To assess oxidative stress and antioxidant capacity in testis, levels of malondialdehyde (MDA), glutathione (GSH), folate and susceptibility index (SI) of pro-oxidative damage, mRNA expression of Nrf2, NFκB-p65, IL-6, IL-10 and TNF-α, in addition to superoxide-dismutase (SOD), catalase and glutathione-peroxidase (GPx) activities were measured. 8-hydroxy-2-deoxyguanosine (8-OHdG) were assessed in both sperm and testis. RESULTS: HFD-fed rats had significantly increased 8-OHdG content in sperm and testis, increased testicular SI, decreased testicular weight, SOD and GPx activity compared to control. Strikingly, supplementation of HFD appeared to significantly reduce 8-OHdG in sperm and testis (22% and 24.3%, respectively), reduce testicular SI and MDA content (28% and 40%, respectively), increase testicular weight (24%), SOD and GPX activity (30% and 70%, respectively) and GSH content (19%). Moreover, supplementation had significant impact to increase testicular folate content regardless of diet. Furthermore, an overall effect of supplementation to increase testicular mRNA expression of Nrf2 was observed across groups. Interestingly, testicular SI was positively correlated with sperm and testicular 8-OHdG and MDA content, suggesting a critical role of testicular antioxidant activity to combat oxidative damage in sperm and testis. CONCLUSION: Our findings suggest that antioxidant-based micronutrient supplement has the potential to interrupt HFD-induced sperm and testicular oxidative damage by improving testicular antioxidant capacity.


Assuntos
Antioxidantes , Testículo , 8-Hidroxi-2'-Desoxiguanosina , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Dieta Hiperlipídica/efeitos adversos , Ácido Fólico/farmacologia , Glutationa/metabolismo , Masculino , Micronutrientes , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Sêmen/metabolismo , Espermatozoides , Superóxido Dismutase/metabolismo
6.
Horm Behav ; 136: 105085, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34749277

RESUMO

Silent infarcts (SI) are a cerebral small vessel disease characterized by small subcortical infarcts. These occur in the absence of typical ischemia symptoms but are linked to cognitive decline and dementia. While there are no approved treatments for SI, recent results from our laboratory suggest that tamoxifen, a selective estrogen receptor modulator, is a viable candidate. In the present study, we induced SI in the dorsal hippocampal CA1 region of rats and assessed the effects of systemic administration of tamoxifen (5 mg/kg, twice) 21 days after injury on cognitive and pathophysiological measures, including cell loss, apoptosis, gliosis and estrogen receptors (ERs). We found that tamoxifen protected against the SI-induced cognitive dysfunction on the hippocampal-dependent, place recognition task, cell and ER loss, and increased apoptosis and gliosis in the CA1. Exploratory data analyses using a scatterplot matrix and principal component analysis indicated that SI-tamoxifen rats were indistinguishable from sham controls while they differed from SI rats, who were characterized by enhanced cell loss, apoptosis and gliosis, lower ERs, and recognition memory deficit. Supervised machine learning using support vector machine (SVM) determined predictors of progression from the early ischemic state to the dementia-like state. It showed that caspase-3 and ERα in the CA1 and exploration proportion were reliable and accurate predictors of this progression. Importantly, tamoxifen ameliorated SI-induced effects on all three of these variables, providing further evidence for its viability as a candidate treatment for SI and prevention of associated dementia.


Assuntos
Demência , Tamoxifeno , Animais , Região CA1 Hipocampal , Gliose/tratamento farmacológico , Hipocampo , Infarto , Masculino , Neuroproteção , Ratos , Tamoxifeno/farmacologia
7.
Horm Behav ; 134: 105016, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34242875

RESUMO

Silent infarcts (SI) are subcortical cerebral infarcts occurring in the absence of typical ischemia symptoms and are linked to cognitive decline and dementia development. There are no approved treatments for SI. One potential treatment is tamoxifen, a selective estrogen receptor modulator. It is critical to establish whether treatments effectively target the early consequences of SI to avoid progression to complete injury. We induced SI in the dorsal hippocampal CA1 of rats and assessed whether tamoxifen is protective 24 h later against cognitive deficits and injury responses including gliosis, apoptosis, inflammation and changes in estrogen receptors (ERs). SI led to subtle cognitive impairment on the object place task, an effect ameliorated by tamoxifen administration. SI did not lead to detectable hippocampal cell loss but increased apoptosis, astrogliosis, microgliosis and inflammation. Tamoxifen protected against the effects of SI on all measures except microgliosis. SI increased ERα and decreased ERß in the hippocampus, which were mitigated by tamoxifen. Exploratory data analyses using scatterplot matrices and principal component analysis indicated that SI rats given tamoxifen were indistinguishable from controls. Further, SI rats were significantly different from all other groups, an effect associated with low levels of ERα and increased apoptosis, gliosis, inflammation, ERß, and time spent with the unmoved object. The results demonstrate that tamoxifen is protective against the early cellular and cognitive consequences of hippocampal SI 24 h after injury. Tamoxifen mitigates apoptosis, gliosis, and inflammation and normalization of ER levels in the CA1, leading to improved cognitive outcomes after hippocampal SI.


Assuntos
Disfunção Cognitiva , Moduladores Seletivos de Receptor Estrogênico , Animais , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Estradiol , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Hipocampo/metabolismo , Infarto , Masculino , Ratos , Ratos Sprague-Dawley , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia
8.
Neurobiol Dis ; 113: 23-32, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29414380

RESUMO

Neuropeptide Y (NPY) is an important 36 amino acid peptide that is abundantly expressed in the mammalian CNS and is known to be an endogenous modulator of seizure activity, including in rat models of Genetic Generalised Epilepsy (GGE) with absence seizures. Studies have shown that viral-mediated "gene therapy" with overexpression of NPY in the hippocampus can suppress seizures in acquired epilepsy animal models. This study investigated whether NPY gene delivery to the thalamus or somatosensory cortex, using recombinant adeno-associated viral vector (rAAV), could produce sustained seizure suppression in the GAERS model of GGE with absence seizures. Three cohorts of GAERS were injected bilaterally into the thalamus (short term n = 14 and long term n = 8) or the somatosensory cortex (n = 26) with rAAV-NPY or rAAV-empty. EEG recordings were acquired weekly post-treatment and seizure expression was quantified. Anxiety levels were tested using elevated plus maze and open field test. NPY and NPY receptor mRNA and protein expression were evaluated using quantitative PCR, immunohistochemistry and immunofluorescence. Viral overexpression of human NPY in the thalamus and somatosensory cortex in GAERS significantly reduced the time spent in seizure activity and number of seizures, whereas seizure duration was only reduced after thalamic NPY overexpression. Human and rat NPY and rat Y2 receptor mRNA expression was significantly increased in the somatosensory cortex. NPY overexpression in the thalamus was observed in rAAV-NPY treated rats compared to controls in the long term cohort. No effect was observed on anxiety behaviour. We conclude that virally-mediated human NPY overexpression in the thalamus or somatosensory cortex produces sustained anti-epileptic effects in GAERS. NPY gene therapy may represent a novel approach for the treatment of patients with genetic generalised epilepsies.


Assuntos
Epilepsia Generalizada/metabolismo , Epilepsia Generalizada/terapia , Terapia Genética/métodos , Neuropeptídeo Y/biossíntese , Convulsões/metabolismo , Convulsões/terapia , Animais , Modelos Animais de Doenças , Epilepsia Generalizada/genética , Expressão Gênica , Masculino , Neuropeptídeo Y/genética , Ratos , Ratos Transgênicos , Convulsões/genética
9.
Curr Obes Rep ; 7(1): 6-18, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29435959

RESUMO

PURPOSE OF REVIEW: This review investigates how exposure to palatable food and its associated cues alters appetite regulation and feeding behaviour to drive overeating and weight gain. RECENT FINDINGS: Both supraphysiological and physiological feeding systems are affected by exposure to palatable foods and its associated cues. Preclinical research, largely using rodents, has demonstrated that palatable food modulates feeding-related neural systems and food-seeking behaviour by recruiting the mesolimbic reward pathway. This is supported by studies in adolescents which have shown that mesolimbic activity in response to palatable food cues and consumption predicts future weight gain. Additionally, stress exposure, environmental factors and individual susceptibility have been shown to modulate the effects of highly palatable foods on behaviour. Further preclinical research using free-choice diets modelling the modern obesogenic environment is needed to identify how palatable foods drive overeating. Moreover, future clinical research would benefit from more appropriate quantification of palatability, making use of rating systems and surveys.


Assuntos
Hiperfagia , Obesidade , Estresse Psicológico , Animais , Humanos , Personalidade , Recompensa
10.
Sci Rep ; 7: 45753, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28362001

RESUMO

Unhealthy diets, and ensuing weight gain, predispose individuals to the development of esophageal adenocarcinoma. We examined the effect of chronic high fat diet (HFD) on the esophageal microbiota of Sprague Dawley rats using Illumina MiSeq amplicon sequencing (V4, 515 F/806 R) and on esophageal expression of IL18, PTGS2, PPARA, FFAR3, and CRAT. The relationships among metabolic parameters, esophageal microbiota, and host gene expression were determined. We observed a significant difference between the upper and lower esophageal microbiota in control fed rats, emphasized by enrichment of Lactobacillus species in the lower esophagus. Rats on HFD gained significantly more fat and had reduced insulin sensitivity. Diet type significantly affected the esophageal microbiota, with Clostridium sensu stricto being enriched in both upper and lower segments of HFD fed rats. Of interest, bacterial pathways related to carotenoid biosynthesis were significantly decreased in the lower esophagus of HFD fed rats. We observed strong correlations between metabolic parameters, the esophageal microbial profiles, and host esophageal gene expression. In particular, Fusobacterium, Rothia, and Granulicatella showed consistent correlations across a range of metabolic and gene markers. Our data indicates that unhealthy diets can significantly alter the esophageal microbiota, and enrich for bacterial species previously associated with chronic gastrointestinal diseases.


Assuntos
Dieta Hiperlipídica , Esôfago/metabolismo , Esôfago/microbiologia , Microbioma Gastrointestinal , Expressão Gênica , Animais , Resistência à Insulina , Masculino , Ratos Sprague-Dawley
11.
Sci Rep ; 7: 40159, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28054648

RESUMO

Type 2 diabetes (T2D) is a global pandemic. Currently, the drugs used to treat T2D improve hyperglycemic symptom of the disease but the underlying mechanism causing the high blood glucose levels have not been fully resolved. Recently published data showed that salt form of niclosamide improved glucose metabolism in high fat fed mice via mitochondrial uncoupling. However, based on our previous work we hypothesised that niclosamide might also improve glucose metabolism via inhibition of the glucagon signalling in liver in vivo. In this study, mice were fed either a chow or high fat diet containing two different formulations of niclosamide (niclosamide ethanolamine salt - NENS or niclosamide - Nic) for 10 weeks. We identified both forms of niclosamide significantly improved whole body glucose metabolism without altering total body weight or body composition, energy expenditure or insulin secretion or sensitivity. Our study provides evidence that inhibition of the glucagon signalling pathway contributes to the beneficial effects of niclosamide (NENS or Nic) on whole body glucose metabolism. In conclusion, our results suggest that the niclosamide could be a useful adjunctive therapeutic strategy to treat T2D, as hepatic glucose output is elevated in people with T2D and current drugs do not redress this adequately.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fármacos Gastrointestinais/administração & dosagem , Glucagon/antagonistas & inibidores , Niclosamida/administração & dosagem , Animais , Composição Corporal , Peso Corporal , Dieta Hiperlipídica , Glucose/metabolismo , Insulina/metabolismo , Camundongos Obesos , Resultado do Tratamento
12.
FEMS Microbiol Ecol ; 92(10)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27465078

RESUMO

The influence of diets rich in saturated fats and simple sugars on the intestinal microbiota plays a central role in obesity. Being overweight or obese predisposes individuals to several diseases including oesophageal adenocarcinoma (OAC), which develops through a cascade of events starting with gastro-oesophageal reflux disease, progressing to Barrett's oesophagus (BO), and then OAC. A range of mechanisms for the increased risk of OAC in obese individuals have been proposed; however, a role for the oesophageal microbiota has been largely ignored. This is despite the fact that it is clear that the composition of the oesophageal microbiota shifts with the development of OAC. Given the well-established impact that unhealthy diets have on the intestinal microbiota, it is plausible that exposure to unhealthy foods, and the ensuing obesity, would result in an imbalance in the oesophageal microbiota. It is also likely that these changes may mimic the changes observed in the intestinal microbiota (i.e. increase in short-chain fatty acid (SCFA) producers and bile acid biosynthesis). The modulation of SCFAs and bile acids in the oesophagus by diet could promote the transdifferentiation from squamous to intestinal-like columnar cells observed in BO, given that intestinal cells proliferate in the presence of SCFAs.


Assuntos
Adenocarcinoma/microbiologia , Neoplasias Esofágicas/microbiologia , Esôfago/microbiologia , Microbiota , Obesidade/microbiologia , Adenocarcinoma/etiologia , Esôfago de Barrett , Ácidos e Sais Biliares , Transdiferenciação Celular , Neoplasias Esofágicas/etiologia , Refluxo Gastroesofágico , Humanos , Obesidade/etiologia
13.
Biochem J ; 473(9): 1247-55, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26964897

RESUMO

Recently, it has been found that glucagon is able to activate the ß-catenin signalling pathway leading to increased cyclin D1 and c-Myc expression in liver. Therefore the main aim of the present study is to determine whether the effect of glucagon activating ß-catenin signalling leading to increased target gene expression is mediated through cAMP activation of PKA (protein kinase A). Primary rat hepatocytes were incubated with insulin, glucagon or adrenaline (epinephrine) and a range of inhibitors of PI3K (phosphoinositide 3-kinase), Wnt, mitochondrial uncoupler (niclosamide) or PKA inhibitors to dissect out the pathway leading to increased Ser(552) phosphorylation on ß-catenin following glucagon exposure. In primary rat hepatocytes, we found that short exposure to glucagon or adrenaline caused a rapid increase in Ser(552) phosphorylation on ß-catenin that leads to increased cyclin D1 and c-Myc expression. A range of PI3K and Wnt inhibitors were unable to block the effect of glucagon phosphorylating ß-catenin. Interestingly, both niclosamide and the PKA inhibitor H89 blocked the glucagon effect on ß-catenin signalling, leading to a reduction in target gene expression. Likewise, niclosamide inhibited cAMP levels and the direct addition of db-cAMP (dibutyryl-cAMP sodium salt) also resulted in Ser(552) phosphorylation of ß-catenin. We have identified a new pathway via glucagon signalling that leads to increased ß-catenin activity that can be reversed with the antihelminthic drug niclosamide, which has recently shown promise as a potential treatment of T2D (Type 2 diabetes). This novel finding could be useful in liver cancer treatment, particularly in the context of T2D with increased ß-catenin activity.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucagon/metabolismo , Hepatócitos/metabolismo , Niclosamida/farmacologia , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Bucladesina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Psychoneuroendocrinology ; 68: 202-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26999723

RESUMO

Stress exposure during early development is known to produce long-term mental health deficits. Stress promotes poor lifestyle choices such as poor diet. Early life adversity and diets high in fat and sugar (HFHS) are known to affect anxiety and memory. However additive effects of HFHS and stress during early development are less explored. Here, we examined whether early life stress (ELS) simulated by limited nesting (LN) induces anxiety-like behaviour and cognitive deficits that are modulated by HFHS diet. We examined key hippocampal markers involved in anxiety and cognition, testing the hypothesis that post-weaning HFHS following ELS would ameliorate anxiety-like behaviour but worsen memory and associated hippocampal changes. Sprague-Dawley rats were exposed to LN, postnatal days 2-9, and at weaning, male siblings were given unlimited access to chow or HFHS resulting in (Con-Chow, Con-HFHS, LN-Chow, LN-HFHS, n=11-15/group). Anxiety-like behaviour was assessed by Elevated Plus Maze (EPM) at 10 weeks and spatial and object recognition tested at 11 weeks of age. Rats were culled at 13 weeks. Hippocampal mRNA expression was measured using TaqMan(®) Array Micro Fluidic cards (Life Technologies). As expected HFHS diet increased body weight; LN and control rats had similar weights at 13 weeks, energy intake was also similar across groups. LN-Chow rats showed increased anxiety-like behaviour relative to control rats, but this was reversed by HFHS diet. Spatial and object recognition memory were unaltered by LN exposure or consumption of HFHS diet. Hippocampal glucocorticoid receptor (GR) protein was not affected by LN exposure in chow rats, but was increased by 45% in HFHS rats relative to controls. Hippocampal genes involved in plasticity and mood regulation, GSKα and GSKß were affected, with reductions in GSKß under both diet conditions, and reduced GSKα only in LN-HFHS versus Con-HFHS. Interestingly, HFHS diet and LN exposure independently reduced expression of Akt3 mRNA, a key gene involved post-natal brain development. In summary, while an energy rich diet ameliorated anxiety-like behaviour induced by LN exposure, it significantly altered key genes that are essential for hippocampal development.


Assuntos
Ansiedade/dietoterapia , Ansiedade/metabolismo , Gorduras na Dieta/administração & dosagem , Sacarose Alimentar/administração & dosagem , Animais , Peso Corporal/fisiologia , Dieta Hiperlipídica , Ingestão de Energia/fisiologia , Comportamento Alimentar , Quinases da Glicogênio Sintase/metabolismo , Hipocampo/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/psicologia
15.
Physiol Behav ; 162: 52-60, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-26828038

RESUMO

Excessive consumption of sugar sweetened drinks is proposed to produce functional changes in the hippocampus, leading to perturbations in learning and memory. In this study we examined the impact of 2h daily access to 10% sucrose (or no sucrose in controls) on recognition memory tasks in young male and female rats. In Experiment 1 we tested rats on memory tasks reliant on the hippocampus (place recognition), perirhinal cortex (object recognition), and a combination of hippocampus, prefrontal cortex and perirhinal cortex (object-in-place memory). Exposure to sucrose for 2h a day for 14days prior to behavioral testing did not affect object recognition, but impaired spatial memory to an extent in both male and female rats. Male rats exposed to sucrose were impaired at both place recognition and object-in-place recognition, however female rats showed no impairment in object-in-place performance. Plasticity within the hippocampus is known to increase during the proestrus phase of the estrous cycle and is related to higher levels of circulating estrogens. In Experiment 2 we tested place recognition and object-in-place memory in 10% sucrose exposed or non-exposed control female rats both during the metestrus (low estrogen) and proestrus (high estrogen) phases of their cycle on place recognition and object-in-place memory. Both sucrose exposed and control female rats were able to perform place object-in-place recognition correctly during metestrus and proestrus, however sucrose exposed rats were only able to perform place recognition correctly during proestrus. This indicates that when hippocampal function is compromised, endogenous estrogens may boost memory performance in females, and that males may be at more risk of high sugar diet induced cognitive deficits.


Assuntos
Ciclo Estral/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Caracteres Sexuais , Memória Espacial/efeitos dos fármacos , Sacarose/farmacologia , Edulcorantes/farmacologia , Análise de Variância , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Estrogênios/metabolismo , Comportamento Exploratório/fisiologia , Feminino , Masculino , Progesterona/metabolismo , Ratos , Ratos Sprague-Dawley , Memória Espacial/fisiologia
16.
Arch Physiol Biochem ; 121(3): 88-96, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26135564

RESUMO

In the last 20 years the prevalence of metabolic disorders, in particular type 2 diabetes (T2D), has more than doubled. Recently, a strong link between T2D and cancer, in particularly liver cancer has been reported. However, the mechanism connecting the development of type 2 diabetes and cancer remains unknown. One of the biggest drivers of liver cancer is alterations in the Wnt/ß-catenin pathway. In this study, we aimed to identify the effect of glucagon on ß-catenin in the isolated rat liver. We found glucagon, which is substantially raised in patients with T2D, rapidly phosphorylates ß-catenin on serine 552 that is associated with increased expression of genes cyclin D1 (CCND1) and c-Myc (MYC), which are known to be involved in liver cancer. This finding may explain the increased risk of liver cancer in people with T2D.


Assuntos
Ciclina D1/metabolismo , Glucagon/farmacologia , Fígado/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Serina/metabolismo , beta Catenina/metabolismo , Animais , Ciclina D1/agonistas , Ciclina D1/genética , Regulação da Expressão Gênica , Glucagon/metabolismo , Bombas de Infusão , Fígado/metabolismo , Masculino , Técnicas de Cultura de Órgãos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/agonistas , Proteínas Proto-Oncogênicas c-myc/genética , Ratos , Ratos Sprague-Dawley , Via de Sinalização Wnt , beta Catenina/genética
17.
PLoS One ; 10(4): e0120980, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853572

RESUMO

Obesity during pregnancy contributes to the development of metabolic disorders in offspring. Maternal exercise may limit gestational weight gain and ameliorate these programming effects. We previously showed benefits of post-weaning voluntary exercise in offspring from obese dams. Here we examined whether voluntary exercise during pregnancy influences lipid and glucose homeostasis in muscle and fat in offspring of both lean and obese dams. Female Sprague-Dawley rats were fed chow (C) or high fat (F) diet for 6 weeks before mating. Half underwent voluntary exercise (CE/FE) with a running wheel introduced 10 days prior to mating and available until the dams delivered; others remained sedentary (CS/FS). Male and female pups were killed at postnatal day (PND)19 and retroperitoneal fat and gastrocnemius muscle were collected for gene expression. Lean and obese dams achieved similar modest levels of exercise. At PND1, both male and female pups from exercised lean dams were significantly lighter (CE versus CS), with no effect in those from obese dams. At PND19, maternal obesity significantly increased offspring body weight and adiposity, with no effect of maternal exercise. Exercise significantly reduced insulin concentrations in males (CE/FE versus CS/FS), with reduced glucose in male FE pups. In males, maternal obesity significantly decreased muscle myogenic differentiation 1 (MYOD1) and glucose transporter type 4 (GLUT4) mRNA expressions (FS vs CS); these were normalized by exercise. Maternal exercise upregulated adipose GLUT4, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α) mRNA expression in offspring of dams consuming chow. Modest voluntary exercise during pregnancy was associated with lower birth weight in pups from lean dams. Maternal exercise appeared to decrease the metabolic risk induced by maternal obesity, improving insulin/glucose metabolism, with greater effects in male than female offspring.


Assuntos
Tecido Adiposo/metabolismo , Dieta , Glucose/metabolismo , Mães , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Desmame , Tecido Adiposo Branco/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Feminino , Regulação da Expressão Gênica , Hormônios/sangue , Insulina/sangue , Masculino , Obesidade/fisiopatologia , Tamanho do Órgão , Fenótipo , Gravidez , Ratos , Ratos Sprague-Dawley , Triglicerídeos/sangue
18.
Cell Mol Life Sci ; 72(3): 629-644, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25098352

RESUMO

The adipocyte-derived cytokine leptin acts as a metabolic switch, connecting the body's metabolism to high-energy consuming processes such as reproduction and immune responses. We here provide genetic and biochemical evidence that the metabolic and immune functions of leptin can be uncoupled at the receptor level. First, homozygous mutant fatt/fatt mice carry a spontaneous splice mutation causing deletion of the leptin receptor (LR) immunoglobulin-like domain (IGD) in all LR isoforms. These mice are hyperphagic and morbidly obese, but display only minimal changes in size and cellularity of the thymus, and cellular immune responses are unaffected. These animals also displayed liver damage in response to concavalin A comparable to wild-type and heterozygous littermates. Second, treatment of healthy mice with a neutralizing nanobody targeting IGD induced weight gain and hyperinsulinaemia, but completely failed to block development of experimentally induced autoimmune diseases. These data indicate that leptin receptor deficiency or antagonism profoundly affects metabolism, with little concomitant effects on immune functions.


Assuntos
Leptina/imunologia , Leptina/metabolismo , Receptores para Leptina/metabolismo , Análise de Variância , Animais , Artrite Experimental/patologia , Sequência de Bases , Western Blotting , Doença Hepática Induzida por Substâncias e Drogas/patologia , Primers do DNA/genética , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/patologia , Citometria de Fluxo , Células HEK293 , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Glicoproteína Mielina-Oligodendrócito/toxicidade , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Receptores para Leptina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Deleção de Sequência/genética
19.
FASEB J ; 28(4): 1830-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24421403

RESUMO

We previously showed that paternal high-fat diet (HFD) consumption programs ß-cell dysfunction in female rat offspring, together with transcriptome alterations in islets. Here we investigated the retroperitoneal white adipose tissue (RpWAT) transcriptome using gene and pathway enrichment and pathway analysis to determine whether commonly affected network topologies exist between these two metabolically related tissues. In RpWAT, 5108 genes were differentially expressed due to a paternal HFD; the top 5 significantly enriched networks identified by pathway analysis in offspring of HFD fathers compared with those of fathers fed control diet were: mitochondrial and cellular response to stress, telomerase signaling, cell death and survival, cell cycle, cellular growth and proliferation, and cancer. A total of 187 adipose olfactory receptor genes were down-regulated. Interrogation against the islet transcriptome identified specific gene networks and pathways, including olfactory receptor genes that were similarly affected in both tissues (411 common genes, P<0.05). In particular, we highlight a common molecular network, cell cycle and cancer, with the same hub gene, Myc, suggesting early onset developmental changes that persist, shared responses to programmed systemic factors, or crosstalk between tissues. Thus, paternal HFD consumption triggers unique gene signatures, consistent with premature aging and chronic degenerative disorders, in both RpWAT and pancreatic islets of daughters.


Assuntos
Dieta Hiperlipídica , Gordura Intra-Abdominal/metabolismo , Ilhotas Pancreáticas/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Transcriptoma/genética , Animais , Análise por Conglomerados , Gorduras na Dieta/administração & dosagem , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Ratos , Ratos Sprague-Dawley , Transcriptoma/efeitos dos fármacos
20.
Diabetologia ; 57(3): 614-22, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24337156

RESUMO

AIMS/HYPOTHESIS: Maternal obesity leads to increased adiposity, hyperlipidaemia and glucose intolerance in offspring. The analogue of glucagon-like peptide-1, exendin-4 (Ex-4), has been shown to induce weight loss in both adolescence and adulthood. We hypothesised that, in rats, daily injection of Ex-4 would reduce body fat and improve metabolic disorders in offspring from obese dams, especially those consuming a high-fat diet (HFD). METHODS: Female Sprague Dawley rats were fed chow or an HFD for 5 weeks before mating, and throughout gestation and lactation. At postnatal day 20, male pups from HFD-fed mothers were weaned onto chow or HFD and those from chow-fed mothers were fed chow. Within each dietary group, half of the pups were injected with Ex-4 (15 µg/kg/day i.p.) for 6 weeks, while the other half received saline. RESULTS: Maternal obesity alone or combined with postweaning HFD consumption led to increased adiposity, hyperinsulinaemia, hyperlipidaemia, inflammation and impaired regulation of hypothalamic appetite regulators by glucose in offspring, while glucose intolerance was only observed in HFD-fed rats from obese dams. Ex-4 injection significantly reduced adiposity, hyperlipidaemia and insulin resistance in HFD-fed rats from obese dams. It also restored glucose tolerance and the lipid-lowering effect of blood glucose. However, Ex-4 did not change hypothalamic appetite regulation or the response of appetite regulators to hyperglycaemia. Liver and adipose inflammatory cytokine expression was significantly reduced by Ex-4. CONCLUSIONS/INTERPRETATION: Ex-4 reversed the detrimental impact of maternal obesity on lipid and glucose metabolism in offspring regardless of diet, supporting its potential application in reducing metabolic disorders in high-risk populations.


Assuntos
Animais Recém-Nascidos , Glicemia/metabolismo , Hipoglicemiantes/farmacologia , Resistência à Insulina , Hipernutrição/metabolismo , Peptídeos/farmacologia , Peçonhas/farmacologia , Adiposidade , Animais , Regulação do Apetite , Biomarcadores/metabolismo , Peso Corporal , Dieta Hiperlipídica , Exenatida , Feminino , Teste de Tolerância a Glucose , Hiperglicemia/fisiopatologia , Hipotálamo/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Hipernutrição/complicações , Gravidez , Ratos , Ratos Sprague-Dawley , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA