Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Mol Pharm ; 20(2): 987-996, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36626167

RESUMO

Despite the understanding that renal clearance is pivotal for driving the pharmacokinetics of numerous therapeutic proteins and peptides, the specific processes that occur following glomerular filtration remain poorly defined. For instance, sites of catabolism within the proximal tubule can occur at the brush border, within lysosomes following endocytosis, or even within the tubule lumen itself. The objective of the current study was to address these limitations and develop methodology to study the kidney disposition of a model therapeutic protein. Exenatide is a peptide used to treat type 2 diabetes mellitus. Glomerular filtration and ensuing renal catabolism have been shown to be its principal clearance pathway. Here, we designed and validated a Förster resonance energy transfer-quenched exenatide derivative to provide critical information on the renal handling of exenatide. A combination of in vitro techniques was used to confirm substantial fluorescence quenching of intact peptide that was released upon proteolytic cleavage. This evaluation was then followed by an assessment of the in vivo disposition of quenched exenatide directly within kidneys of living rats via intravital two-photon microscopy. Live imaging demonstrated rapid glomerular filtration and identified exenatide metabolism occurred within the subapical regions of the proximal tubule epithelia, with subsequent intracellular trafficking of cleaved fragments. These results provide a novel examination into the real-time, intravital disposition of a protein therapeutic within the kidney and offer a platform to build upon for future work.


Assuntos
Diabetes Mellitus Tipo 2 , Exenatida , Rim , Animais , Ratos , Diabetes Mellitus Tipo 2/metabolismo , Exenatida/metabolismo , Exenatida/farmacocinética , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Peptídeos/metabolismo
2.
JCI Insight ; 6(11)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914709

RESUMO

Patients with chronic kidney disease (CKD) and end-stage renal disease suffer from increased cardiovascular events and cardiac mortality. Prior studies have demonstrated that a portion of this enhanced risk can be attributed to the accumulation of microbiota-derived toxic metabolites, with most studies focusing on the sulfonated form of p-cresol (PCS). However, unconjugated p-cresol (uPC) itself was never assessed due to rapid and extensive first-pass metabolism that results in negligible serum concentrations of uPC. These reports thus failed to consider the host exposure to uPC prior to hepatic metabolism. In the current study, not only did we measure the effect of altering the intestinal microbiota on lipid accumulation in coronary arteries, but we also examined macrophage lipid uptake and handling pathways in response to uPC. We found that atherosclerosis-prone mice fed a high-fat diet exhibited significantly higher coronary artery lipid deposits upon receiving fecal material from CKD mice. Furthermore, treatment with uPC increased total cholesterol, triglycerides, and hepatic and aortic fatty deposits in non-CKD mice. Studies employing an in vitro macrophage model demonstrated that uPC exposure increased apoptosis whereas PCS did not. Additionally, uPC exhibited higher potency than PCS to stimulate LDL uptake and only uPC induced endocytosis- and pinocytosis-related genes. Pharmacological inhibition of varying cholesterol influx and efflux systems indicated that uPC increased macrophage LDL uptake by activating macropinocytosis. Overall, these findings indicate that uPC itself had a distinct effect on macrophage biology that might have contributed to increased cardiovascular risk in patients with CKD.


Assuntos
Aorta/metabolismo , LDL-Colesterol/metabolismo , Doença da Artéria Coronariana/metabolismo , Cresóis/metabolismo , Microbioma Gastrointestinal , Fígado/metabolismo , Macrófagos/metabolismo , Pinocitose/fisiologia , Insuficiência Renal Crônica/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Colesterol/metabolismo , LDL-Colesterol/efeitos dos fármacos , Doença da Artéria Coronariana/patologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Cresóis/farmacologia , Dieta Hiperlipídica , Transplante de Microbiota Fecal , Falência Renal Crônica/metabolismo , Falência Renal Crônica/microbiologia , Fígado/efeitos dos fármacos , Fígado/patologia , Macrófagos/efeitos dos fármacos , Camundongos , Pinocitose/efeitos dos fármacos , Insuficiência Renal Crônica/microbiologia , Triglicerídeos/metabolismo
3.
AAPS J ; 22(4): 84, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32529599

RESUMO

Monocarboxylate transporter 1 (MCT1) represents a potential therapeutic target in cancer. The objective of this study was to determine the efficacy of AZD3965 (a specific inhibitor of MCT1) and α-cyano-4-hydroxycinnamic acid (CHC, a nonspecific inhibitor of MCTs) in the murine 4T1 tumor model of triple-negative breast cancer (TNBC). Expression of MCT1 and MCT4 in 4T1 and mouse mammary epithelial cells were determined by Western blot. Inhibition of MCT1-mediated L-lactate uptake and cellular proliferation by AZD3965 and CHC was determined. Mice bearing 4T1 breast tumors were treated with AZD3965 100 mg/kg i.p. twice-daily or CHC 200 mg/kg i.p. once-daily. Tumor growth, metastasis, intra-tumor lactate concentration, immune function, tumor MCT expression, and concentration-effect relationships were determined. AZD3965 and CHC inhibited cell growth and L-lactate uptake in 4T1 cells. AZD3965 treatment resulted in trough plasma and tumor concentrations of 29.1 ± 13.9 and 1670 ± 946 nM, respectively. AZD3965 decreased the tumor proliferation biomarker Ki67 expression, increased intra-tumor lactate concentration, and decreased tumor volume, although tumor weight was not different from untreated controls. CHC had no effect on tumor volume and weight, or intra-tumor lactate concentration. AZD3965 treatment reduced the blood leukocyte count and spleen weight and increased lung metastasis, while CHC did not. These findings indicate AZD3965 is a potent MCT1 inhibitor that accumulates to high concentrations in 4T1 xenograft tumors, where it increases tumor lactate concentrations and produces beneficial effects on markers of TNBC; however, overall effects on tumor growth were minimal and lung metastases increased.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Ácidos Cumáricos/administração & dosagem , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Pirimidinonas/administração & dosagem , Simportadores/antagonistas & inibidores , Tiofenos/administração & dosagem , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Ácidos Cumáricos/metabolismo , Relação Dose-Resposta a Droga , Feminino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Transportadores de Ácidos Monocarboxílicos/metabolismo , Pirimidinonas/metabolismo , Simportadores/metabolismo , Tiofenos/metabolismo , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
Pharmacol Rev ; 72(2): 466-485, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32144120

RESUMO

The solute carrier family 16 (SLC16) is comprised of 14 members of the monocarboxylate transporter (MCT) family that play an essential role in the transport of important cell nutrients and for cellular metabolism and pH regulation. MCTs 1-4 have been extensively studied and are involved in the proton-dependent transport of L-lactate, pyruvate, short-chain fatty acids, and monocarboxylate drugs in a wide variety of tissues. MCTs 1 and 4 are overexpressed in a number of cancers, and current investigations have focused on transporter inhibition as a novel therapeutic strategy in cancers. MCT1 has also been used in strategies aimed at enhancing drug absorption due to its high expression in the intestine. Other MCT isoforms are less well characterized, but ongoing studies indicate that MCT6 transports xenobiotics such as bumetanide, nateglinide, and probenecid, whereas MCT7 has been characterized as a transporter of ketone bodies. MCT8 and MCT10 transport thyroid hormones, and recently, MCT9 has been characterized as a carnitine efflux transporter and MCT12 as a creatine transporter. Expressed at the blood brain barrier, MCT8 mutations have been associated with an X-linked intellectual disability, known as Allan-Herndon-Dudley syndrome. Many MCT isoforms are associated with hormone, lipid, and glucose homeostasis, and recent research has focused on their potential roles in disease, with MCTs representing promising novel therapeutic targets. This review will provide a summary of the current literature focusing on the characterization, function, and regulation of the MCT family isoforms and on their roles in drug disposition and in health and disease. SIGNIFICANCE STATEMENT: The 14-member solute carrier family 16 of monocarboxylate transporters (MCTs) plays a fundamental role in maintaining intracellular concentrations of a broad range of important endogenous molecules in health and disease. MCTs 1, 2, and 4 (L-lactate transporters) are overexpressed in cancers and represent a novel therapeutic target in cancer. Recent studies have highlighted the importance of MCTs in glucose, lipid, and hormone homeostasis, including MCT8 in thyroid hormone brain uptake, MCT12 in carnitine transport, and MCT11 in type 2 diabetes.


Assuntos
Transportadores de Ácidos Monocarboxílicos/metabolismo , Animais , Humanos , Doenças Metabólicas/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/química , Transportadores de Ácidos Monocarboxílicos/genética , Relação Estrutura-Atividade , Distribuição Tecidual , Transcrição Gênica
5.
AAPS J ; 21(2): 13, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30617815

RESUMO

AR-C155858 and AZD3965, pyrrole pyrimidine derivatives, represent potent monocarboxylate transporter 1 (MCT1) inhibitors, with potential immunomodulatory and chemotherapeutic properties. Currently, there is limited information on the inhibitory properties of this new class of MCT1 inhibitors. The purpose of this study was to characterize the concentration- and time-dependent inhibition of L-lactate transport and the membrane permeability properties of AR-C155858 and AZD3965 in the murine 4T1 breast tumor cells that express MCT1. Our results demonstrated time-dependent inhibition of L-lactate uptake by AR-C155858 and AZD3965 with maximal inhibition occurring after a 5-min pre-incubation period and prolonged inhibition. Following removal of AR-C155858 or AZD3965 from the incubation buffer, inhibition of L-lactate uptake was only fully reversed after 3 and 12 h, respectively, indicating that these inhibitors are slowly reversible. The uptake of AR-C155858 was concentration-dependent in 4T1 cells, whereas the uptake of AZD3965 exhibited no concentration dependence over the range of concentrations examined. The uptake kinetics of AR-C155858 was best fitted to a Michaelis-Menten equation with a diffusional clearance component, P (Km = 0.399 ± 0.067 µM, Vmax = 4.79 ± 0.58 pmol/mg/min, and P = 0.330 ± 0.088 µL/mg/min). AR-C155858 uptake, but not AZD3965 uptake, was significantly inhibited by alpha-cyano-4-hydroxycinnamic acid, a known nonspecific inhibitor of MCTs 1, 2, and 4. AR-C155858 demonstrated a trend toward higher uptake at lower pH, a characteristic of proton-dependent MCT1. These findings provide evidence that AR-C155858 and AZD3965 exert slowly reversible inhibition of MCT1-mediated L-lactate uptake in 4T1 cells, with AR-C155858 representing a potential substrate of MCT1.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Pirimidinonas/farmacologia , Simportadores/antagonistas & inibidores , Tiofenos/farmacologia , Uracila/análogos & derivados , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ácidos Cumáricos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Uracila/farmacologia
6.
AAPS J ; 21(1): 3, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397860

RESUMO

Monocarboxylate transporter 1 (MCT1), also known as a L-lactate transporter, is a potential therapeutic target in cancer. The objectives of this study were to evaluate efficacy and assess concentration-effect relationships of AR-C155858 (a selective and potent MCT1 inhibitor) in murine 4T1 breast cancer cells and in the 4T1 tumor xenograft model. Western blotting of 4T1 cells demonstrated triple negative breast cancer (TNBC) characteristics and overexpression of MCT1 and CD147 (a MCT1 accessory protein), but absence of MCT4 expression. AR-C155858 inhibited the cellular L-lactate uptake and cellular proliferation at low nanomolar potencies (IC50 values of 25.0 ± 4.2 and 20.2 ± 0.2 nM, respectively). In the xenograft 4T1 mouse model of immunocompetent animals, AR-C155858 (10 mg/kg i.p. once daily) had no effect on tumor volume and weight. Treatment with AR-C155858 resulted in slightly increased tumor lactate concentrations; however, the changes were not statistically significant. AR-C155858 was well tolerated, as demonstrated by the unchanged body weight and blood lactate concentrations. Average blood and tumor AR-C155858 concentrations (110 ± 22 and 574 ± 245 nM, respectively), 24 h after the last dose, were well above the IC50 values. These data indicate that AR-C155858 penetrated 4T1 xenograft tumors and was present at high concentrations but was ineffective in decreasing tumor growth. Evaluations of AR-C155858 in other preclinical models of breast cancer are needed to further assess its efficacy.


Assuntos
Neoplasias Mamárias Experimentais/tratamento farmacológico , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Simportadores/antagonistas & inibidores , Tiofenos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Uracila/análogos & derivados , Animais , Basigina/metabolismo , Linhagem Celular Tumoral/transplante , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Simportadores/metabolismo , Tiofenos/farmacologia , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/patologia , Uracila/farmacologia , Uracila/uso terapêutico
7.
Am J Physiol Renal Physiol ; 315(5): F1191-F1207, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29949391

RESUMO

The megalin/cubilin complex is responsible for the majority of serum protein reclamation in the proximal tubules. The current study examined if decreases in their renal expression, along with the albumin recycling protein neonatal Fc receptor (FcRn) could account for proteinuria/albuminuria in the Zucker diabetic fatty rat model of type 2 diabetes. Immunoblots of renal cortex samples obtained at worsening disease stages demonstrated no loss in megalin, cubilin, or FcRn, even when proteinuria was measured. Additionally, early diabetic rats exhibited significantly increased renal megalin expression when compared with controls (adjusted P < 0.01). Based on these results, the ability of insulin to increase megalin was examined in a clonal subpopulation of the opossum kidney proximal tubule cell line. Insulin treatments (24 h, 100 nM) under high glucose conditions significantly increased megalin protein ( P < 0.0001), mRNA ( P < 0.0001), and albumin endocytosis. The effect on megalin expression was prevented with inhibitors against key effectors of insulin intracellular signaling, phosphatidylinositide 3-kinase and Akt. Studies using rapamycin to inhibit the mechanistic target of rapamycin complex 1 (mTORC1) resulted in a loss of insulin-induced megalin expression. However, subsequent evaluation demonstrated these effects were independent of initial mTORC1 suppression. The presented results provide insight into the expression of megalin, cubilin, and FcRn in type 2 diabetes, which may be impacted by elevated insulin and glucose. Furthermore, proximal tubule endocytic activity in early diabetics may be enhanced, a process that could have a significant role in proteinuria-induced renal damage.


Assuntos
Albuminúria/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Insulina/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Albuminúria/etiologia , Albuminúria/genética , Albuminúria/fisiopatologia , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Endocitose/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Túbulos Renais Proximais/fisiopatologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Gambás , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Zucker , Receptores de Superfície Celular/metabolismo , Receptores Fc/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Regulação para Cima
8.
J Pharm Biomed Anal ; 155: 270-275, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29674138

RESUMO

AZD3965, a pyrole pyrimidine derivative, is a potent and orally bioavailable inhibitor of monocarboxylate transporter 1 (MCT1), currently in a Phase I clinical trial in UK for lymphomas and solid tumors. There is currently no published assay for AZD3965. The objectives of this study were to develop and validate a LC/MS/MS assay for quantifying AZD3965 in mouse plasma and tumor tissue. Protein precipitation with 0.1% formic acid in acetonitrile was used for sample preparation. Chromatographic separation was achieved on a C18 column followed by tandem mass spectrometry detection in multiple reaction monitoring mode with utilizing Atmospheric Pressure Chemical Ionization. AR-C155858 was used as the internal standard. The inter-day and intra-day precision and accuracy of quality control samples evaluated in plasma and tumor tissue were less than ±7% of the nominal concentrations. The extraction recovery, matrix effect and stability values were all within acceptable levels. Sample dilution integrity, accessed by diluting plasma spiked with AZD3965 10-fold with blank plasma, was 101%. The lower limit of quantification (LLOQ) and upper limit of quantification (ULOQ) were 0.15 ng/mL and 12 µg/mL, respectively, in plasma. The assay of AZD3965 in tumor tissue was also validated with good precision and accuracy. The LLOQ was 0.15 ng/mL in tumor tissue. This assay was successfully applied to pharmacokinetic and murine 4T1 breast tumor xenograft studies of AZD3965 in mice.


Assuntos
Neoplasias da Mama/sangue , Neoplasias da Mama/metabolismo , Cromatografia Líquida/métodos , Plasma/química , Pirimidinonas/sangue , Pirimidinonas/metabolismo , Espectrometria de Massas em Tandem/métodos , Tiofenos/sangue , Tiofenos/metabolismo , Acetonitrilas/sangue , Acetonitrilas/metabolismo , Animais , Pressão Atmosférica , Linhagem Celular Tumoral , Feminino , Xenoenxertos/metabolismo , Camundongos , Pirimidinas/sangue , Pirimidinas/metabolismo , Reprodutibilidade dos Testes , Uracila/análogos & derivados , Uracila/sangue , Uracila/metabolismo
9.
AAPS J ; 19(5): 1317-1331, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28664465

RESUMO

The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) separate the brain and cerebrospinal fluid (CSF) from the systemic circulation and represent a barrier to the uptake of both endogenous compounds and xenobiotics into the brain. For compounds whose passive diffusion is limited due to their ionization or hydrophilicity, membrane transporters can facilitate their uptake across the BBB or BCSFB. Members of the solute carrier (SLC) and ATP-binding case (ABC) families are present on these barriers. Differences exist in the localization and expression of transport proteins between the BBB and BCSFB, resulting in functional differences in transport properties. This review focuses on the expression, membrane localization, and different isoforms present at each barrier. Diseases that affect the central nervous system including brain tumors, HIV, Alzheimer's disease, Parkinson's disease, and stroke affect the integrity and expression of transporters at the BBB and BCSFB and will be briefly reviewed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/análise , Barreira Hematoencefálica , Proteínas Carreadoras de Solutos/análise , Transportadores de Cassetes de Ligação de ATP/líquido cefalorraquidiano , Membrana Celular/química , Humanos , Isoformas de Proteínas , Proteínas Carreadoras de Solutos/líquido cefalorraquidiano
10.
Mol Pharm ; 14(9): 2930-2936, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28513167

RESUMO

Monocarboxylate transporter 6 (MCT6; SLC16A5) has been recognized for its role as a xenobiotic transporter, with characterized substrates probenecid, bumetanide, and nateglinide. To date, the impact of commonly ingested dietary compounds on MCT6 function has not been investigated, and therefore, the objective of this study was to evaluate a variety of flavonoids for their potential MCT6-specific interactions. Flavonoids are a large group of polyphenolic phytochemicals found in commonly consumed plant-based products that have been recognized for their dietary health benefits. The uptake of bumetanide in human MCT6 gene-transfected Xenopus laevis oocytes was significantly decreased in the presence of a variety of flavonoids (e.g., quercetin, luteolin, phloretin, and morin), but was not significantly affected by flavonoid glycosides (e.g., naringin, rutin, phlorizin). The IC50 values of quercetin, phloretin, and morin were determined to be 25.3 ± 3.36, 17.3 ± 2.37, and 33.1 ± 3.29 µM, respectively. The mechanism of inhibition of phloretin was reversible and competitive, with a Ki value of 22.8 µM. Furthermore, typical MCT substrates were also investigated for their potential interactions with MCT6. Substrates of MCTs 1, 2, 4, 8, and 10 did not cause any significant decrease in MCT6-mediated bumetanide uptake, suggesting that MCT6 has distinct compound selectivity. In summary, these results suggest that dietary aglycon flavonoids may significantly alter the pharmacokinetics and pharmacodynamics of bumetanide and other MCT6-specific substrates, and may represent potential substrates for MCT6.


Assuntos
Flavonoides/metabolismo , Luteolina/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Floretina/metabolismo , Quercetina/metabolismo , Animais , Bumetanida/metabolismo , Humanos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Oócitos/metabolismo , Xenopus laevis
11.
Pharm Res ; 32(6): 1894-906, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25480120

RESUMO

PURPOSE: Monocarboxylate transporter (MCT) inhibition represents a potential treatment strategy for γ-hydroxybutyric acid (GHB) overdose by blocking its renal reabsorption in the kidney. This study further evaluated the effects of a novel, highly potent MCT inhibitor, AR-C155858, on GHB toxicokinetics/toxicodynamics (TK/TD). METHODS: Rats were administered GHB (200, 600 or 1500 mg/kg i.v. or 1500 mg/kg po) with and without AR-C155858. Breathing frequency was continuously monitored using whole-body plethysmography. Plasma and urine samples were collected up to 8 h. The effect of AR-C155858 on GHB brain/plasma partitioning was also assessed. RESULTS: AR-C155858 treatment significantly increased GHB renal and total clearance after intravenous GHB administration at all the GHB doses used in this study. GHB-induced respiratory depression was significantly improved by AR-C155858 as demonstrated by an improvement in the respiratory rate. AR-C155858 treatment also resulted in a significant reduction in brain/plasma partitioning of GHB (0.1 ± 0.03) when compared to GHB alone (0.25 ± 0.02). GHB CLR and CLoral (CL/F) following oral administration were also significantly increased following AR-C155858 treatment (from 1.82 ± 0.63 to 5.74 ± 0.86 and 6.52 ± 0.88 to 10.2 ± 0.75 ml/min/kg, respectively). CONCLUSION: The novel and highly potent MCT inhibitor represents a potential treatment option for GHB overdose.


Assuntos
Antídotos/farmacologia , Overdose de Drogas/tratamento farmacológico , Rim/efeitos dos fármacos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Insuficiência Respiratória/tratamento farmacológico , Oxibato de Sódio/toxicidade , Tiofenos/farmacologia , Uracila/análogos & derivados , Administração Intravenosa , Administração Oral , Animais , Encéfalo/metabolismo , Linhagem Celular , Overdose de Drogas/metabolismo , Rim/metabolismo , Masculino , Taxa de Depuração Metabólica , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ratos Sprague-Dawley , Reabsorção Renal/efeitos dos fármacos , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/metabolismo , Insuficiência Respiratória/fisiopatologia , Taxa Respiratória/efeitos dos fármacos , Oxibato de Sódio/administração & dosagem , Oxibato de Sódio/farmacocinética , Distribuição Tecidual , Uracila/farmacologia
12.
Drug Metab Dispos ; 42(9): 1357-66, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25002746

RESUMO

Organic anion transporter 1 (OAT1) has been reported to be involved in the nephrotoxicity of many anionic xenobiotics. As current clinically used OAT1 inhibitors are often associated with safety issues, identifying potent OAT1 inhibitors with little toxicity is of great value in reducing OAT1-mediated drug nephrotoxicity. Flavonoids are a class of polyphenolic compounds with exceptional safety records. Our objective was to evaluate the effects of 18 naturally occurring flavonoids, and some of their glycosides, on the uptake of para-aminohippuric acid (PAH) in both OAT1-expressing and OAT1-negative LLC-PK1 cells. Most flavonoid aglycones produced substantial decreases in PAH uptake in OAT1-expressing cells. Among the flavonoids screened, fisetin, luteolin, morin, and quercetin exhibited the strongest effect and produced complete inhibition of OAT1-mediated PAH uptake at a concentration of 50 µM. Further concentration-dependent studies revealed that both morin and luteolin are potent OAT1 inhibitors, with IC50 values of <0.3 and 0.47 µM, respectively. In contrast to the tested flavonoid aglycones, all flavonoid glycosides had negligible or small effects on OAT1. In addition, the role of OAT1 in the uptake of fisetin, luteolin, morin, and quercetin was investigated and fisetin was found to be a substrate of OAT1. Taken together, our results indicate that flavonoids are a novel class of OAT1 modulators. Considering the high consumption of flavonoids in the diet and in herbal products, OAT1-mediated flavonoid-drug interactions may be clinically relevant. Further investigation is warranted to evaluate the nephroprotective role of flavonoids in relation to drug-induced nephrotoxicity mediated by the OAT1 pathway.


Assuntos
Transporte Biológico/efeitos dos fármacos , Flavonoides/farmacologia , Proteína 1 Transportadora de Ânions Orgânicos/antagonistas & inibidores , Animais , Linhagem Celular , Interações Medicamentosas/fisiologia , Flavonóis , Glicosídeos/farmacologia , Humanos , Células LLC-PK1 , Luteolina/farmacologia , Quercetina/farmacologia , Suínos , Ácido p-Aminoipúrico/metabolismo
13.
AAPS J ; 16(4): 705-13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24821055

RESUMO

Phenethyl isothiocyanate (PEITC)-a naturally occurring isothiocyanate in cruciferous vegetables-has been extensively studied as a chemopreventive agent in several preclinical species and in humans. Pharmacokinetic features of unchanged PEITC are (I) linear and first-order absorption, (II) high protein binding and capacity-limited tissue distribution, and (III) reversible metabolism and capacity-limited hepatic elimination. Membrane transport of PEITC is mediated by BCRP, multidrug resistance-associated protein (MRP) 1, and MRP2 transporters belonging to the ATP-binding-cassette (ABC) family. PEITC is metabolized by glutathione S-transferase (GST) in the liver, with the glutathione conjugate of PEITC undergoing further conversion to mercapturic acid by N-acetyl transferase in rats and humans. PEITC modulates the activity and expression of numerous phase I and phase II drug-metabolizing enzymes and can inhibit the metabolism of procarcinogens to form carcinogens and increase carcinogen elimination. In recent years, several in vitro and in vivo studies have elucidated molecular mechanisms underlying the pharmacodynamics of PEITC in breast cancer that include cancer cell apoptosis by upregulation of apoptotic genes, cell cycle arrest at G2/M phase by generation of reactive oxygen species and depletion of intracellular glutathione, downregulation of the estrogen receptor, decrease in sensitivity to estrogen, and inhibition of tumor metastasis. Inhibition of angiogenesis is one of the recently reported mechanisms of breast cancer prevention by PEITC. Complex pharmacokinetics and pharmacodynamics of PEITC necessitate a systems-biology approach in parallel with PK/PD modeling to develop PEITC as a therapeutic agent for treating cancers.


Assuntos
Anticarcinógenos/farmacologia , Anticarcinógenos/farmacocinética , Neoplasias da Mama/prevenção & controle , Isotiocianatos/farmacologia , Isotiocianatos/farmacocinética , Animais , Feminino , Humanos , Ratos
14.
Curr Pharm Des ; 20(10): 1487-98, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23789956

RESUMO

Monocarboxylate transporters (MCTs) are known to mediate the transport of short chain monocarboxylates such as lactate, pyruvate and butyrate. Currently, fourteen members of this transporter family have been identified by sequence homology, of which only the first four members (MCT1- MCT4) have been shown to mediate the proton-linked transport of monocarboxylates. Another transporter family involved in the transport of endogenous monocarboxylates is the sodium coupled MCTs (SMCTs). These act as a symporter and are dependent on a sodium gradient for their functional activity. MCT1 is the predominant transporter among the MCT isoforms and is present in almost all tissues including kidney, intestine, liver, heart, skeletal muscle and brain. The various isoforms differ in terms of their substrate specificity and tissue localization. Due to the expression of these transporters in the kidney, intestine, and brain, they may play an important role in influencing drug disposition. Apart from endogenous short chain monocarboxylates, they also mediate the transport of exogenous drugs such as salicylic acid, valproic acid, and simvastatin acid. The influence of MCTs on drug pharmacokinetics has been extensively studied for γ-hydroxybutyrate (GHB) including distribution of this drug of abuse into the brain and the results will be summarized in this review. The physiological role of these transporters in the brain and their specific cellular localization within the brain will also be discussed. This review will also focus on utilization of MCTs as potential targets for drug delivery into the brain including their role in the treatment of malignant brain tumors.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Preparações Farmacêuticas/administração & dosagem , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Humanos
15.
Pharm Res ; 30(5): 1338-48, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23319173

RESUMO

PURPOSE: L-lactate represents a potential treatment for GHB overdose by inhibiting GHB renal reabsorption mediated by monocarboxylate transporters. Our objective was to assess the dose-dependence of L-lactate treatment, with and without D-mannitol, on GHB toxicokinetics/toxicodynamics (TK/TD). METHODS: Rats were administered GHB 600 mg/kg i.v. with L-lactate (low and high doses), D-mannitol, or L-lactate (low dose) with D-mannitol. GHB-induced sleep time and GHB plasma, urine and brain extracellular fluid (ECF) concentrations (by LC/MS/MS) were determined. The effect of L-lactate and D-mannitol on the uptake and efflux of GHB was assessed in rat brain endothelial RBE4 cells. RESULTS: L-lactate treatment increased GHB renal clearance from 1.4 ± 0.1 ml/min/kg (control) to 2.4 ± 0.2 and 4.7 ± 0.5 ml/min/kg after low and high doses, respectively, and reduced brain ECF AUC values to 65 and 25% of control. Sleep time was decreased from 137 ± 12 min (control) to 91 ± 16 and 55 ± 5 min (low and high L-lactate, respectively). D-mannitol did not alter GHB TK/TD and did not alter L-lactate's effects on GHB TK/TD. L-lactate, but not D-mannitol, inhibited GHB uptake, and increased GHB efflux from RBE4 cells. CONCLUSIONS: L-lactate decreases plasma and brain ECF concentrations of GHB, decreasing sedative/hypnotic effects.


Assuntos
Encéfalo/efeitos dos fármacos , Hipnóticos e Sedativos/toxicidade , Ácido Láctico/uso terapêutico , Sono/efeitos dos fármacos , Oxibato de Sódio/toxicidade , Animais , Encéfalo/metabolismo , Linhagem Celular , Overdose de Drogas , Humanos , Hipnóticos e Sedativos/sangue , Hipnóticos e Sedativos/metabolismo , Hipnóticos e Sedativos/urina , Ácido Láctico/administração & dosagem , Masculino , Manitol/administração & dosagem , Manitol/uso terapêutico , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Oxibato de Sódio/sangue , Oxibato de Sódio/metabolismo , Oxibato de Sódio/urina
16.
Biopharm Drug Dispos ; 34(2): 98-106, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23138465

RESUMO

The effect of phenethyl isothiocyanate (PEITC), a component of cruciferous vegetables, on the initiation and progression of cancer was investigated in a chemically induced estrogen-dependent breast cancer model. Breast cancer was induced in female Sprague Dawley rats (8 weeks old) by the administration of N-methyl nitrosourea (NMU). Animals were administered 50 or 150 µmol/kg oral PEITC and monitored for tumor appearance for 18 weeks. The PEITC treatment prolonged the tumor-free survival time and decreased the tumor incidence and multiplicity. The time to the first palpable tumor was prolonged from 69 days in the control, to 84 and 88 days in the 50 and 150 µmol/kg PEITC-treated groups. The tumor incidence in the control, 50 µmol/kg, and 150 µmol/kg PEITC-treated groups was 56.6%, 25.0% and 17.2%, while the tumor multiplicity was 1.03, 0.25 and 0.21, respectively. Differences were statistically significant (p < 0.05) from the control, but there were no significant differences between the two dose levels. The intratumoral capillary density decreased from 4.21 ± 0.30 vessels per field in the controls to 2.46 ± 0.25 in the 50 µmol/kg and 2.36 ± 0.23 in the 150 µmol/kg PEITC-treated animals. These studies indicate that supplementation with PEITC prolongs the tumor-free survival, reduces tumor incidence and burden, and is chemoprotective in NMU-induced estrogen-dependent breast cancer in rats. For the first time, it is reported that PEITC has anti-angiogenic effects in a chemically induced breast cancer animal model, representing a potentially significant mechanism contributing to its chemopreventive activity.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Anticarcinógenos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Isotiocianatos/uso terapêutico , Alquilantes , Animais , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/patologia , Neoplasias da Mama/prevenção & controle , Dieta , Modelos Animais de Doenças , Feminino , Metilnitrosoureia , Ratos , Ratos Sprague-Dawley , Carga Tumoral/efeitos dos fármacos
17.
Pharm Res ; 29(7): 1843-53, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22373666

RESUMO

PURPOSE: To use noninvasive fluorescence imaging to investigate the influence of molecular weight (MW) of proteins on the rate of loss from a subcutaneous (SC) injection site and subsequent uptake by the draining lymph nodes in mice. METHODS: Bevacizumab (149 kDa), bovine serum albumin (BSA, 66 kDa), ovalbumin (44.3 kDa) or VEGF-C156S (23 kDa), labeled with the near infrared dye IRDye 680, were injected SC into the front footpad of SKH-1 mice. Whole body non-invasive fluorescence imaging was performed to quantitate the fluorescence signal at the injection site and in axillary lymph nodes. RESULTS: The half-life values, describing the times for 50% loss of proteins from the injection site, were 6.81 h for bevacizumab, 2.85 h for BSA, 1.57 h for ovalbumin and 0.31 h for VEGF-C156S. The corresponding axillary lymph node exposure, represented as the area of the % dose versus time curve, was 6.27, 5.13, 4.06 and 1.54% dose ∙ h, respectively. CONCLUSIONS: Our results indicate that the rate of loss of proteins from a SC injection site is inversely related to MW of proteins, while lymph node exposure is proportionally related to the MW of proteins in a mouse model.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Linfonodos/metabolismo , Ovalbumina/farmacocinética , Soroalbumina Bovina/farmacocinética , Fator A de Crescimento do Endotélio Vascular/farmacocinética , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Bevacizumab , Bovinos , Fluorescência , Corantes Fluorescentes/análise , Meia-Vida , Injeções Subcutâneas , Masculino , Camundongos , Peso Molecular , Ovalbumina/administração & dosagem , Soroalbumina Bovina/administração & dosagem , Espectrometria de Fluorescência , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Imagem Corporal Total
18.
AAPS J ; 14(2): 252-61, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22391791

RESUMO

Our objective was to determine the pharmacokinetics, bioavailability and lymph node uptake of the monoclonal antibody bevacizumab, labeled with the near-infrared (IR) dye 800CW, after intravenous (IV) and subcutaneous (SC) administration in mice. Fluorescence imaging and enzyme-linked immunosorbent assay (ELISA) assays were developed and validated to measure the concentration of bevacizumab in plasma. The bevacizumab-IRDye conjugate remained predominantly intact in plasma and in lymph node homogenate samples over a 24-h period, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis and size exclusion chromatography. The plasma concentration vs. time plots obtained by fluorescence and ELISA measurements were similar; however, unlike ELISA, fluorescent imaging was only able to quantitate concentrations for 24 h after administration. At a low dose of 0.45 mg/kg, the plasma clearance of bevacizumab was 6.96 mL/h/kg after IV administration; this clearance is higher than that reported after higher doses. Half-lives of bevacizumab after SC and IV administration were 4.6 and 3.9 days, respectively. After SC administration, bevacizumab-IRDye800CW was present in the axillary lymph nodes that drain the SC site; lymph node uptake of bevacizumab-IRDye 800CW was negligible after IV administration. Bevacizumab exhibited complete bioavailability after SC administration. Using a compartmental pharmacokinetic model, the fraction absorbed through the lymphatics after SC administration was estimated to be about 1%. This is the first report evaluating the use of fluorescent imaging to determine the pharmacokinetics, lymphatic uptake, and bioavailability of a near-infrared dye-labeled antibody conjugate.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacocinética , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/farmacocinética , Linfonodos/metabolismo , Modelos Biológicos , Animais , Bevacizumab , Humanos , Injeções Intravenosas , Injeções Subcutâneas , Linfonodos/efeitos dos fármacos , Masculino , Camundongos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
19.
AAPS J ; 14(2): 352-64, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22451016

RESUMO

We conducted a pharmacokinetic (PK) study of mitoxantrone (Novantrone®), a clinically well-established anticancer agent, in mice and developed a mechanism-based PBPK (physiologically based pharmacokinetic) model to describe its disposition. Mitoxantrone concentrations in plasma and six organs (lung, heart, liver, kidney, spleen, and brain) were determined after a 5 mg/kg i.v. dose. We evaluated three different PBPK models in order to characterize our experimental data: model 1 containing Kp values, model 2 incorporating a deep binding compartment, and model 3 incorporating binding of mitoxantrone to DNA and protein. Among the three models, only model 3 with DNA and protein binding captured all the experimental data well. The estimated binding affinity for DNA (K (DNA)) and protein (K (macro)) were 0.0013 and 1.44 µM, respectively. Predicted plasma and tissue AUC values differed from observed values by <19 %, except for heart (60 %). Model 3 was further used to simulate plasma mitoxantrone concentrations in humans for a 12-mg/m(2) dose, using human physiological parameters. The simulated results generally agreed with the observed time course of mitoxantrone plasma concentrations in patients after a standard dose of 12 mg/m(2). In summary, we reported for the first time a mechanism-based PBPK model of mitoxantrone incorporating macromolecule binding which may have clinical applicability in optimizing clinical therapy. Since mitoxantrone is a substrate of the efflux transporters ABCG2 and ABCB1, the incorporation of efflux transporters may also be necessary to characterize the data obtained in low-dose studies.


Assuntos
DNA/metabolismo , Mitoxantrona/farmacocinética , Modelos Biológicos , Animais , DNA/sangue , Humanos , Masculino , Camundongos , Mitoxantrona/sangue , Ligação Proteica/fisiologia , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
20.
Biopharm Drug Dispos ; 32(8): 446-57, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21910126

RESUMO

The aim of the study was to investigate the role of breast cancer resistance protein (BCRP, ABCG2) in the transport of biochanin A and its metabolites. Transport studies were carried out in MDCK/bcrp1 as well as in control cells, and samples were analysed for biochanin A aglycone and metabolites using LC/MS/MS. In bidirectional transport studies biochanin A sulfate was detected in both apical and basolateral chambers after the addition of biochanin A. Analysis by RT-PCR revealed that the enzyme sulfotransferase 1A1 is expressed in Madin-Darby canine kidney (MDCK)-II cells. After its intracellular formation, biochanin A sulfate was preferentially transported to the basolateral side in MDCK/Mock cells, whereas apical transport of biochanin A sulfate was predominant in MDCK/Bcrp1 cells. Genistein, an additional metabolite of biochanin A formed intracellularly, was also found to be a bcrp1 substrate. Studies with MDCK/MRP2 (ABCC2) cells demonstrated that both genistein and biochanin A sulfate are not MRP2 substrates. In contrast, biochanin A aglycone was not transported by murine or human BCRP; nor is it a substrate of MRP2 or P-glycoprotein. Therefore, BCRP may play an important role in the enteric cycling of biochanin A sulfate and through this mechanism may alter the bioavailability of its non-substrate parent compound biochanin A. Moreover, MDCK-II cells might be a suitable model to investigate the synergistic role of sulfotransferase enzymes with efflux transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Genisteína/metabolismo , Sulfatos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Arilsulfotransferase/genética , Arilsulfotransferase/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Cães , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , RNA Mensageiro/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA