Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 4(10): 1508-1525, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37723306

RESUMO

The PDCD1-encoded immune checkpoint receptor PD-1 is a key tumor suppressor in T cells that is recurrently inactivated in T cell non-Hodgkin lymphomas (T-NHLs). The highest frequencies of PDCD1 deletions are detected in advanced disease, predicting inferior prognosis. However, the tumor-suppressive mechanisms of PD-1 signaling remain unknown. Here, using tractable mouse models for T-NHL and primary patient samples, we demonstrate that PD-1 signaling suppresses T cell malignancy by restricting glycolytic energy and acetyl coenzyme A (CoA) production. In addition, PD-1 inactivation enforces ATP citrate lyase (ACLY) activity, which generates extramitochondrial acetyl-CoA for histone acetylation to enable hyperactivity of activating protein 1 (AP-1) transcription factors. Conversely, pharmacological ACLY inhibition impedes aberrant AP-1 signaling in PD-1-deficient T-NHLs and is toxic to these cancers. Our data uncover genotype-specific vulnerabilities in PDCD1-mutated T-NHL and identify PD-1 as regulator of AP-1 activity.


Assuntos
Linfoma de Células T Periférico , Linfoma de Células T , Camundongos , Animais , Humanos , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Linfoma de Células T/genética , Genes Supressores de Tumor , Acetilcoenzima A/metabolismo , Glicólise/genética
2.
Eur J Immunol ; 53(3): e2250147, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36541400

RESUMO

VAV1-MYO1F is a recently identified gain-of-function fusion protein of the proto-oncogene Vav guanine nucleotide exchange factor 1 (VAV1) that is recurrently detected in T-cell non-Hodgkin's lymphoma (T-NHL) patients. However, the pathophysiological functions of VAV1-MYO1F in lymphomagenesis are insufficiently defined. Therefore, we generated transgenic mouse models to conditionally express VAV1-MYO1F in T-cells in vivo. We demonstrate that VAV1-MYO1F triggers cell autonomous activation of T-cell signaling with an activation of the ERK, JNK, and AKT pathways. VAV1-MYO1F expression induces a T-cell activation phenotype with high surface expression of CD25, ICOS, CD44, PD-1, and decreased CD62L as well as aberrant T-cell differentiation, proliferation, and neoplastic transformation. Consequently, the VAV1-MYO1F expressing T-cells induce a malignant T lymphoproliferative disease with 100% penetrance in vivo that mimics key aspects of human peripheral T-cell lymphoma. These results demonstrate that the human T-cell oncogene VAV1-MYO1F is sufficient to trigger oncogenic T-cell signaling and neoplastic transformation, and moreover, it provides a new clinically relevant mouse model to explore the pathogenesis of and treatment concepts for human T-cell lymphoma.


Assuntos
Linfoma de Células T Periférico , Proteínas Proto-Oncogênicas c-vav , Camundongos , Humanos , Animais , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Linfoma de Células T Periférico/genética , Transdução de Sinais , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Camundongos Transgênicos , Oncogenes , Miosina Tipo I/genética , Miosina Tipo I/metabolismo
4.
Sci Adv ; 8(19): eabh2332, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35544574

RESUMO

Tumor necrosis factor (TNF) is a key component of the innate immune response. Upon binding to its receptor, TNFR1, it promotes production of other cytokines via a membrane-bound complex 1 or induces cell death via a cytosolic complex 2. To understand how TNF-induced cell death is regulated, we performed mass spectrometry of complex 2 and identified tankyrase-1 as a native component that, upon a death stimulus, mediates complex 2 poly-ADP-ribosylation (PARylation). PARylation promotes recruitment of the E3 ligase RNF146, resulting in proteasomal degradation of complex 2, thereby limiting cell death. Expression of the ADP-ribose-binding/hydrolyzing severe acute respiratory syndrome coronavirus 2 macrodomain sensitizes cells to TNF-induced death via abolishing complex 2 PARylation. This suggests that disruption of ADP-ribosylation during an infection can prime a cell to retaliate with an inflammatory cell death.

6.
Blood Adv ; 4(20): 5062-5077, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33080008

RESUMO

The specific targeting of inhibitor of apoptosis (IAP) proteins by Smac-mimetic (SM) drugs, such as birinapant, has been tested in clinical trials of acute myeloid leukemia (AML) and certain solid cancers. Despite their promising safety profile, SMs have had variable and limited success. Using a library of more than 5700 bioactive compounds, we screened for approaches that could sensitize AML cells to birinapant and identified multidrug resistance protein 1 inhibitors (MDR1i) as a class of clinically approved drugs that can enhance the efficacy of SM therapy. Genetic or pharmacological inhibition of MDR1 increased intracellular levels of birinapant and sensitized AML cells from leukemia murine models, human leukemia cell lines, and primary AML samples to killing by birinapant. The combination of clinical MDR1 and IAP inhibitors was well tolerated in vivo and more effective against leukemic cells, compared with normal hematopoietic progenitors. Importantly, birinapant combined with third-generation MDR1i effectively killed murine leukemic stem cells (LSCs) and prolonged survival of AML-burdened mice, suggesting a therapeutic opportunity for AML. This study identified a drug combination strategy that, by efficiently killing LSCs, may have the potential to improve outcomes in patients with AML.


Assuntos
Leucemia Mieloide Aguda , Animais , Disponibilidade Biológica , Dipeptídeos , Humanos , Indóis , Proteínas Inibidoras de Apoptose/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos
7.
Viruses ; 12(8)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824616

RESUMO

Chronic hepatitis B virus (HBV) infection remains a global health threat and affects hundreds of millions worldwide. Small molecule compounds that mimic natural antagonists of inhibitor of apoptosis (IAP) proteins, known as Smac-mimetics (second mitochondria-derived activator of caspases-mimetics), can promote the death of HBV-replicating liver cells and promote clearance of infection in preclinical models of HBV infection. The Smac-mimetic birinapant is a substrate of the multidrug resistance protein 1 (MDR1) efflux pump, and therefore inhibitors of MDR1 increase intracellular concentration of birinapant in MDR1 expressing cells. Liver cells are known to express MDR1 and other drug pump proteins. In this study, we investigated whether combining the clinical drugs, birinapant and the MDR1 inhibitor zosuquidar, increases the efficacy of birinapant in killing HBV expressing liver cells. We showed that this combination treatment is well tolerated and, compared to birinapant single agent, was more efficient at inducing death of HBV-positive liver cells and improving HBV-DNA and HBV surface antigen (HBsAg) control kinetics in an immunocompetent mouse model of HBV infection. Thus, this study identifies a novel and safe combinatorial treatment strategy to potentiate substantial reduction of HBV replication using an IAP antagonist.


Assuntos
Antivirais/uso terapêutico , Dibenzocicloeptenos/uso terapêutico , Dipeptídeos/uso terapêutico , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/tratamento farmacológico , Indóis/uso terapêutico , Quinolinas/uso terapêutico , Replicação Viral/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Modelos Animais de Doenças , Quimioterapia Combinada , Células Hep G2 , Vírus da Hepatite B/fisiologia , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Cells ; 9(2)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053868

RESUMO

It is well accepted that the ability of cancer cells to circumvent the cell death program that untransformed cells are subject to helps promote tumor growth. Strategies designed to reinstate the cell death program in cancer cells have therefore been investigated for decades. Overexpression of members of the Inhibitor of APoptosis (IAP) protein family is one possible mechanism hindering the death of cancer cells. To promote cell death, drugs that mimic natural IAP antagonists, such as second mitochondria-derived activator of caspases (Smac/DIABLO) were developed. Smac-Mimetics (SMs) have entered clinical trials for hematological and solid cancers, unfortunately with variable and limited results so far. This review explores the use of SMs for the treatment of cancer, their potential to synergize with up-coming treatments and, finally, discusses the challenges and optimism facing this strategy.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteína 3 com Repetições IAP de Baculovírus/genética , Proteínas Inibidoras de Apoptose/genética , Proteínas Mitocondriais/genética , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/uso terapêutico , Biomimética , Proliferação de Células/efeitos dos fármacos , Ensaios Clínicos como Assunto , Humanos , Proteínas Mitocondriais/uso terapêutico , Neoplasias/genética , Neoplasias/patologia , Ligação Proteica
9.
Cell Cycle ; 15(1): 137-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26771717

RESUMO

Expression of Breast Cancer Metastasis Suppressor 1 (BRMS1) reduces the incidence of metastasis in many human cancers, without affecting tumorigenesis. BRMS1 carries out this function through several mechanisms, including regulation of gene expression by binding to the mSin3/histone deacetylase (HDAC) transcriptional repressor complex. In the present study, we show that BRMS1 is a novel substrate of Cyclin-Dependent Kinase 2 (CDK2) that is phosphorylated on serine 237 (S237). Although CDKs are known to regulate cell cycle progression, the mutation of BRMS1 on serine 237 did not affect cell cycle progression and proliferation of MDA-MB-231 breast cancer cells; however, their migration was affected. Phosphorylation of BRMS1 does not affect its association with the mSin3/HDAC transcriptional repressor complex or its transcriptional repressor activity. The serine 237 phosphorylation site is immediately proximal to a C-terminal nuclear localization sequence that plays an important role in BRMS1-mediated metastasis suppression but phosphorylation does not control BRMS1 subcellular localization. Our studies demonstrate that CDK-mediated phosphorylation of BRMS1 regulates the migration of tumor cells.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular/fisiologia , Quinase 2 Dependente de Ciclina/fisiologia , Proteínas Repressoras/metabolismo , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Fosforilação/fisiologia
10.
Sleep Med ; 4(6): 583-6, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14607354

RESUMO

We present a patient with cerebral lymphoma who developed a selective circadian rhythm disturbance. Treatment with modafinil led to a considerable improvement in quality of life.


Assuntos
Encéfalo/patologia , Transtornos Cronobiológicos/etiologia , Linfoma não Hodgkin/complicações , Linfoma não Hodgkin/diagnóstico , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA