Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 5(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983823

RESUMO

Carcinogenic insult, such as UV light exposure, creates DNA lesions that evolve into mutations if left unrepaired. These resulting mutations can contribute to carcinogenesis and drive malignant phenotypes. Susceptibility to carcinogens (i.e., the propensity to form a carcinogen-induced DNA lesion) is regulated by both genetic and epigenetic factors. Importantly, carcinogen susceptibility is a critical contributor to cancer mutagenesis. It is known that mutations can be prevented by tumor suppressor regulation of DNA damage response pathways; however, their roles carcinogen susceptibility have not yet been reported. In this study, we reveal that the retinoblastoma (RB1) tumor suppressor regulates UV susceptibility across broad regions of the genome. In particular, centromere and telomere-proximal regions exhibit significant increases in UV lesion susceptibility when RB1 is deleted. Several cancer-related genes are located within genomic regions of increased susceptibility, including telomerase reverse transcriptase, TERT, thereby accelerating mutagenic potential in cancers with RB1 pathway alterations. These findings reveal novel genome stability mechanisms of a tumor suppressor and uncover new pathways to accumulate mutations during cancer evolution.


Assuntos
Carcinogênese , Carcinógenos/farmacologia , Neoplasias , Proteínas de Ligação a Retinoblastoma/genética , Ubiquitina-Proteína Ligases/genética , Sistemas CRISPR-Cas , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular , Técnicas de Inativação de Genes , Predisposição Genética para Doença/genética , Humanos , Mutação/genética , Neoplasias/genética , Neoplasias/patologia , Oncogenes/genética
2.
FEBS J ; 289(5): 1302-1314, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34036737

RESUMO

Adaptation of cellular function with the nutrient environment is essential for survival. Failure to adapt can lead to cell death and/or disease. Indeed, energy metabolism alterations are a major contributing factor for many pathologies, including cancer, cardiovascular disease, and diabetes. In particular, a primary characteristic of cancer cells is altered metabolism that promotes survival and proliferation even in the presence of limited nutrients. Interestingly, recent studies demonstrate that metabolic pathways produce intermediary metabolites that directly influence epigenetic modifications in the genome. Emerging evidence demonstrates that metabolic processes in cancer cells fuel malignant growth, in part, through epigenetic regulation of gene expression programs important for proliferation and adaptive survival. In this review, recent progress toward understanding the relationship of cancer cell metabolism, epigenetic modification, and transcriptional regulation will be discussed. Specifically, the need for adaptive cell metabolism and its modulation in cancer cells will be introduced. Current knowledge on the emerging field of metabolite production and epigenetic modification will also be reviewed. Alterations of DNA (de)methylation, histone modifications, such as (de)methylation and (de)acylation, as well as chromatin remodeling, will be discussed in the context of cancer cell metabolism. Finally, how these epigenetic alterations contribute to cancer cell phenotypes will be summarized. Collectively, these studies reveal that both metabolic and epigenetic pathways in cancer cells are closely linked, representing multiple opportunities to therapeutically target the unique features of malignant growth.


Assuntos
Carcinogênese/genética , Epigênese Genética , Histonas/genética , Neoplasias/genética , Transcrição Gênica , Células Tumorais Cultivadas/metabolismo , Antineoplásicos/uso terapêutico , Carcinogênese/metabolismo , Carcinogênese/patologia , Proliferação de Células/efeitos dos fármacos , Cromatina/química , Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Histonas/antagonistas & inibidores , Histonas/metabolismo , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Terapia de Alvo Molecular/métodos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/patologia
3.
Mutat Res ; 823: 111758, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34333390

RESUMO

Exposure to the ultraviolet (UV) radiation in sunlight creates DNA lesions, which if left unrepaired can induce mutations and contribute to skin cancer. The two most common UV-induced DNA lesions are the cis-syn cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), both of which can initiate mutations. Interestingly, mutation frequency across the genomes of many cancers is heterogenous with significant increases in heterochromatin. Corresponding increases in UV lesion susceptibility and decreases in repair are observed in heterochromatin versus euchromatin. However, the individual contributions of CPDs and 6-4PPs to mutagenesis have not been systematically examined in specific genomic and epigenomic contexts. In this study, we compared genome-wide maps of 6-4PP and CPD lesion abundances in primary cells and conducted comprehensive analyses to determine the genetic and epigenetic features associated with susceptibility. Overall, we found a high degree of similarity between 6-4PP and CPD formation, with an enrichment of both in heterochromatin regions. However, when examining the relative levels of the two UV lesions, we found that bivalent and Polycomb-repressed chromatin states were uniquely more susceptible to 6-4PPs. Interestingly, when comparing UV susceptibility and repair with melanoma mutation frequency in these regions, disparate patterns were observed in that susceptibility was not always inversely associated with repair and mutation frequency. Functional enrichment analysis hint at mechanisms of negative selection for these regions that are essential for cell viability, immune function and induce cell death when mutated. Ultimately, these results reveal both the similarities and differences between UV-induced lesions that contribute to melanoma.


Assuntos
Reparo do DNA , Epigênese Genética/efeitos da radiação , Melanoma/genética , Mutação , Neoplasias Cutâneas/genética , Raios Ultravioleta/efeitos adversos , Dano ao DNA , Bases de Dados Genéticas , Eucromatina/química , Eucromatina/metabolismo , Eucromatina/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Genoma Humano/efeitos da radiação , Heterocromatina/química , Heterocromatina/metabolismo , Heterocromatina/efeitos da radiação , Histonas/genética , Histonas/metabolismo , Humanos , Melanoma/etiologia , Melanoma/metabolismo , Melanoma/patologia , Mutagênese , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Cultura Primária de Células , Dímeros de Pirimidina/agonistas , Dímeros de Pirimidina/metabolismo , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
4.
Nat Genet ; 52(11): 1178-1188, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020667

RESUMO

Somatic mutations in driver genes may ultimately lead to the development of cancer. Understanding how somatic mutations accumulate in cancer genomes and the underlying factors that generate somatic mutations is therefore crucial for developing novel therapeutic strategies. To understand the interplay between spatial genome organization and specific mutational processes, we studied 3,000 tumor-normal-pair whole-genome datasets from 42 different human cancer types. Our analyses reveal that the change in somatic mutational load in cancer genomes is co-localized with topologically-associating-domain boundaries. Domain boundaries constitute a better proxy to track mutational load change than replication timing measurements. We show that different mutational processes lead to distinct somatic mutation distributions where certain processes generate mutations in active domains, and others generate mutations in inactive domains. Overall, the interplay between three-dimensional genome organization and active mutational processes has a substantial influence on the large-scale mutation-rate variations observed in human cancers.


Assuntos
Cromatina/química , Genoma Humano , Mutação , Neoplasias/genética , Linhagem Celular Tumoral , Cromossomos Humanos X/genética , Reparo de Erro de Pareamento de DNA , Análise Mutacional de DNA , DNA de Neoplasias , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Inativação do Cromossomo X
5.
Mol Metab ; 38: 100973, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32251664

RESUMO

BACKGROUND: ATP-dependent chromatin remodelers are evolutionarily conserved complexes that alter nucleosome positioning to influence many DNA-templated processes, such as replication, repair, and transcription. In particular, chromatin remodeling can dynamically regulate gene expression by altering accessibility of chromatin to transcription factors. SCOPE OF REVIEW: This review provides an overview of the importance of chromatin remodelers in the regulation of metabolic gene expression. Particular emphasis is placed on the INO80 and SWI/SNF (BAF/PBAF) chromatin remodelers in both yeast and mammals. This review details discoveries from the initial identification of chromatin remodelers in Saccharomyces cerevisiae to recent discoveries in the metabolic requirements of developing embryonic tissues in mammals. MAJOR CONCLUSIONS: INO80 and SWI/SNF (BAF/PBAF) chromatin remodelers regulate the expression of energy metabolism pathways in S. cerevisiae and mammals in response to diverse nutrient environments. In particular, the INO80 complex organizes the temporal expression of gene expression in the metabolically synchronized S. cerevisiae system. INO80-mediated chromatin remodeling is also needed to constrain cell division during metabolically favorable conditions. Conversely, the BAF/PBAF remodeler regulates tissue-specific glycolytic metabolism and is disrupted in cancers that are dependent on glycolysis for proliferation. The role of chromatin remodeling in metabolic gene expression is downstream of the metabolic signaling pathways, such as the TOR pathway, a critical regulator of metabolic homeostasis. Furthermore, the INO80 and BAF/PBAF chromatin remodelers have both been shown to regulate heart development, the tissues of which have unique requirements for energy metabolism during development. Collectively, these results demonstrate that chromatin remodelers communicate metabolic status to chromatin and are a central component of homeostasis pathways that optimize cell fitness, organismal development, and prevent disease.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica/genética , Redes e Vias Metabólicas/genética , Animais , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas de Ligação a DNA , Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Redes e Vias Metabólicas/fisiologia , Metabolismo/genética , Metabolismo/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Ativação Transcricional/fisiologia
6.
Genome Biol ; 20(1): 298, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31874648

RESUMO

BACKGROUND: Somatic mutations in healthy tissues contribute to aging, neurodegeneration, and cancer initiation, yet they remain largely uncharacterized. RESULTS: To gain a better understanding of the genome-wide distribution and functional impact of somatic mutations, we leverage the genomic information contained in the transcriptome to uniformly call somatic mutations from over 7500 tissue samples, representing 36 distinct tissues. This catalog, containing over 280,000 mutations, reveals a wide diversity of tissue-specific mutation profiles associated with gene expression levels and chromatin states. For example, lung samples with low expression of the mismatch-repair gene MLH1 show a mutation signature of deficient mismatch repair. In addition, we find pervasive negative selection acting on missense and nonsense mutations, except for mutations previously observed in cancer samples, which are under positive selection and are highly enriched in many healthy tissues. CONCLUSIONS: These findings reveal fundamental patterns of tissue-specific somatic evolution and shed light on aging and the earliest stages of tumorigenesis.


Assuntos
Mutação , Fatores Etários , Envelhecimento/genética , Humanos , Neoplasias/genética , Seleção Genética , Fatores Sexuais
7.
PLoS Genet ; 14(2): e1007216, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29462149

RESUMO

Chromatin remodeling complexes are essential for gene expression programs that coordinate cell function with metabolic status. However, how these remodelers are integrated in metabolic stability pathways is not well known. Here, we report an expansive genetic screen with chromatin remodelers and metabolic regulators in Saccharomyces cerevisiae. We found that, unlike the SWR1 remodeler, the INO80 chromatin remodeling complex is composed of multiple distinct functional subunit modules. We identified a strikingly divergent genetic signature for the Ies6 subunit module that links the INO80 complex to metabolic homeostasis. In particular, mitochondrial maintenance is disrupted in ies6 mutants. INO80 is also needed to communicate TORC1-mediated signaling to chromatin, as ino80 mutants exhibit defective transcriptional profiles and altered histone acetylation of TORC1-responsive genes. Furthermore, comparative analysis reveals subunits of INO80 and mTORC1 have high co-occurrence of alterations in human cancers. Collectively, these results demonstrate that the INO80 complex is a central component of metabolic homeostasis that influences histone acetylation and may contribute to disease when disrupted.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Acetilação , Regulação Fúngica da Expressão Gênica , Instabilidade Genômica/genética , Homeostase/genética , Redes e Vias Metabólicas/genética , Organismos Geneticamente Modificados , Processamento de Proteína Pós-Traducional/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
8.
Nat Commun ; 9(1): 368, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371594

RESUMO

During development, the formation of a mature, well-functioning heart requires transformation of the ventricular wall from a loose trabecular network into a dense compact myocardium at mid-gestation. Failure to compact is associated in humans with congenital diseases such as left ventricular non-compaction (LVNC). The mechanisms regulating myocardial compaction are however still poorly understood. Here, we show that deletion of the Ino80 chromatin remodeler in vascular endothelial cells prevents ventricular compaction in the developing mouse heart. This correlates with defective coronary vascularization, and specific deletion of Ino80 in the two major coronary progenitor tissues-sinus venosus and endocardium-causes intermediate phenotypes. In vitro, endothelial cells promote myocardial expansion independently of blood flow in an Ino80-dependent manner. Ino80 deletion increases the expression of E2F-activated genes and endothelial cell S-phase occupancy. Thus, Ino80 is essential for coronary angiogenesis and allows coronary vessels to support proper compaction of the heart wall.


Assuntos
Adenosina Trifosfatases/metabolismo , Endotélio Vascular/metabolismo , Cardiopatias Congênitas/metabolismo , Neovascularização Patológica/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Animais , Vasos Coronários/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA , Endocárdio/metabolismo , Endocárdio/patologia , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Endotélio Vascular/patologia , Cardiopatias Congênitas/genética , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Camundongos Knockout , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia , Neovascularização Patológica/genética
9.
EMBO J ; 36(19): 2829-2843, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28814448

RESUMO

The development of many sporadic cancers is directly initiated by carcinogen exposure. Carcinogens induce malignancies by creating DNA lesions (i.e., adducts) that can result in mutations if left unrepaired. Despite this knowledge, there has been remarkably little investigation into the regulation of susceptibility to acquire DNA lesions. In this study, we present the first quantitative human genome-wide map of DNA lesions induced by ultraviolet (UV) radiation, the ubiquitous carcinogen in sunlight that causes skin cancer. Remarkably, the pattern of carcinogen susceptibility across the genome of primary cells significantly reflects mutation frequency in malignant melanoma. Surprisingly, DNase-accessible euchromatin is protected from UV, while lamina-associated heterochromatin at the nuclear periphery is vulnerable. Many cancer driver genes have an intrinsic increase in carcinogen susceptibility, including the BRAF oncogene that has the highest mutation frequency in melanoma. These findings provide a genome-wide snapshot of DNA injuries at the earliest stage of carcinogenesis. Furthermore, they identify carcinogen susceptibility as an origin of genome instability that is regulated by nuclear architecture and mirrors mutagenesis in cancer.


Assuntos
Carcinógenos/toxicidade , Transformação Celular Neoplásica , Resistência a Medicamentos/genética , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/genética , Mutagênese , Sequência de Bases/fisiologia , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Células Cultivadas , Dano ao DNA , Resistência a Medicamentos/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Humanos , Melanoma/etiologia , Melanoma/genética , Mutagênese/efeitos dos fármacos , Mutagênese/genética , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/genética , Raios Ultravioleta , Melanoma Maligno Cutâneo
10.
Nat Rev Mol Cell Biol ; 10(6): 373-84, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19424290

RESUMO

Chromatin-modifying factors have essential roles in DNA processing pathways that dictate cellular functions. The ability of chromatin modifiers, including the INO80 and SWR1 chromatin-remodelling complexes, to regulate transcriptional processes is well established. However, recent studies reveal that the INO80 and SWR1 complexes have crucial functions in many other essential processes, including DNA repair, checkpoint regulation, DNA replication, telomere maintenance and chromosome segregation. During these diverse nuclear processes, the INO80 and SWR1 complexes function cooperatively with their histone substrates, gamma-H2AX and H2AZ. This research reveals that INO80 and SWR1 ATP-dependent chromatin remodelling is an integral component of pathways that maintain genomic integrity.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Animais , Cromatina/metabolismo , Cromossomos Fúngicos/metabolismo , Cromossomos Fúngicos/ultraestrutura , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Histonas/classificação , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Transcrição Gênica
11.
Results Probl Cell Differ ; 41: 109-25, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16909893

RESUMO

A requirement of nuclear processes that use DNA as a substrate is the manipulation of chromatin in which the DNA is packaged. Chromatin modifications cause alterations of histones and DNA, and result in a permissive chromatin environment for these nuclear processes. Recent advances in the fields of DNA repair and chromatin reveal that both histone modifications and chromatin-remodeling complexes are essential for the repair of DNA lesions, such as DNA double strand breaks (DSBs). In particular, chromatin-modifying complexes, such as the INO80, SWR1, RSC, and SWI/SNF ATP-dependent chromatin-remodeling complexes and the NuA4 and Tip60 histone acetyltransferase complexes are implicated in DNA repair. The activity of these chromatin-modifying complexes influences the efficiency of the DNA repair process, which ultimately affects genome integrity and carcinogenesis. Thus, the process of DNA repair requires the cooperative activities of evolutionarily conserved chromatin-modifying complexes that facilitate the dynamic chromatin alterations needed during repair of DNA damage.


Assuntos
Cromatina/metabolismo , Reparo do DNA/fisiologia , Animais , Histonas/metabolismo , Humanos , Neoplasias/genética
12.
Mol Cell ; 22(5): 693-9, 2006 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16762841

RESUMO

Two key components of mammalian heterochromatin that play a structural role in higher order chromatin organization are the heterochromatin protein 1alpha (HP1alpha) and the linker histone H1. Here, we show that these proteins interact in vivo and in vitro through their hinge and C-terminal domains, respectively. The phosphorylation of H1 by CDK2, which is required for efficient cell cycle progression, disrupts this interaction. We propose that phosphorylation of H1 provides a signal for the disassembly of higher order chromatin structures during interphase, independent of histone H3-lysine 9 (H3-K9) methylation, by reducing the affinity of HP1alpha for heterochromatin.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Histonas/metabolismo , Animais , Sítios de Ligação , Cromatina/genética , Cromatina/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Quinase 2 Dependente de Ciclina/genética , Imunofluorescência , Regulação da Expressão Gênica , Humanos , Interfase , Camundongos , Células NIH 3T3 , Fosforilação , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Células Tumorais Cultivadas
13.
Cell ; 119(6): 767-75, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15607974

RESUMO

While the role of ATP-dependent chromatin remodeling in transcription is well established, a link between chromatin remodeling and DNA repair has remained elusive. We have found that the evolutionarily conserved INO80 chromatin remodeling complex directly participates in the repair of a double-strand break (DSB) in yeast. The INO80 complex is recruited to a HO endonuclease-induced DSB through a specific interaction with the DNA damage-induced phosphorylated histone H2A (gamma-H2AX). This interaction requires Nhp10, an HMG-like subunit of the INO80 complex. The loss of Nhp10 or gamma-H2AX results in reduced INO80 recruitment to the DSB. Finally, components of the INO80 complex show synthetic genetic interactions with the RAD52 DNA repair pathway, the main pathway for DSB repair in yeast. Our findings reveal a new role of ATP-dependent chromatin remodeling in nuclear processes and suggest that an ATP-dependent chromatin remodeling complex can read a DNA repair histone code.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Reparo do DNA/fisiologia , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/fisiologia , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Imunoprecipitação da Cromatina , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Histonas/genética , Mutação/genética , Ligação Proteica , Proteína Rad52 de Recombinação e Reparo de DNA , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica/genética
14.
Mol Endocrinol ; 17(8): 1543-54, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12730327

RESUMO

Repression of the transcriptional activities of the estrogen receptor (ER) is a main goal in the treatment of breast cancer. The antiestrogen tamoxifen is an effective therapy for breast cancer patients because it inhibits estrogen-stimulated gene expression and cell proliferation. Previous studies have implicated a complex containing the nuclear receptor corepressor (N-CoR) in the mechanism by which tamoxifen represses ER-mediated transcriptional activity. In the present study a truncated N-CoR construct was used to inhibit endogenous N-CoR activity in an ER-positive breast cancer cell line. This dominant-negative N-CoR was successful in relieving repression conferred by the unliganded retinoic acid receptor, but it failed to affect the transcriptional activity of the ER in the presence of tamoxifen. Correspondingly, the histone acetylation levels of nucleosomes on endogenous estrogen-responsive genes were unaltered in cells expressing the N-CoR dominant-negative, regardless of ligand. In addition, in vitro cell proliferation and in vivo tumor growth were unchanged in cells that express dominant-negative N-CoR. In conclusion, these results may reveal that N-CoR affects tamoxifen-liganded ER in a manner distinct from its influence on retinoic acid receptor-mediated transcriptional activity or that corepressors other than N-CoR may be involved in the ability of tamoxifen to repress estrogen-responsive transcription and tumor growth.


Assuntos
Proteínas Nucleares/metabolismo , Receptores de Estrogênio/genética , Receptores do Ácido Retinoico/genética , Proteínas Repressoras/metabolismo , Moduladores Seletivos de Receptor Estrogênico/metabolismo , Tamoxifeno/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Estrogênios/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Dominantes , Humanos , Camundongos , Camundongos Nus , Mutação , Proteínas Nucleares/genética , Correpressor 1 de Receptor Nuclear , Receptores de Estrogênio/agonistas , Receptores de Estrogênio/antagonistas & inibidores , Receptores do Ácido Retinoico/metabolismo , Proteínas Repressoras/genética , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Transcrição Gênica , Células Tumorais Cultivadas
15.
Mol Cell Biol ; 22(3): 856-65, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11784861

RESUMO

The retinoblastoma protein, pRb, controls transcription through recruitment of histone deacetylase to particular E2F-responsive genes. We determined the acetylation level of individual nucleosomes present in the cyclin E promoter of RB(+/+) and RB(-/-) mouse embryo fibroblasts. We also determined the effects of pRb on nucleosomal conformation by examining the thiol reactivity of histone H3 of individual nucleosomes. We found that pRb represses the cyclin E promoter through histone deacetylation of a single nucleosome, to which it and histone deacetylase 1 bind. In addition, the conformation of this nucleosome is modulated by pRb-directed histone deacetylase activity. Thus, the repressive role of pRb in cyclin E transcription and therefore cell cycle progression can be mapped to its control of the acetylation status and conformation of a single nucleosome.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Proteína do Retinoblastoma/metabolismo , Acetilação , Animais , Células Cultivadas , Mapeamento Cromossômico , Ciclina E/genética , Histona Desacetilases/metabolismo , Histonas/química , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA