Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nutrients ; 15(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049555

RESUMO

Type 2 diabetes (T2D) is a challenging health concern worldwide. A lifestyle intervention to treat T2D is difficult to adhere, and the effectiveness of approved medications such as metformin, thiazolidinediones (TZDs), and sulfonylureas are suboptimal. On the other hand, bariatric procedures such as Roux-en-Y gastric bypass (RYGB) are being recognized for their remarkable ability to achieve diabetes remission, although the underlying mechanism is not clear. Recent evidence points to branched-chain amino acids (BCAAs) as a potential contributor to glucose impairment and insulin resistance. RYGB has been shown to effectively lower plasma BCAAs in insulin-resistant or T2D patients that may help improve glycemic control, but the underlying mechanism for BCAA reduction is not understood. Hence, we attempted to explore the mechanism by which RYGB reduces BCAAs. To this end, we randomized diet-induced obese (DIO) mice into three groups that underwent either sham or RYGB surgery or food restriction to match the weight of RYGB mice. We also included regular chow-diet-fed healthy mice as an additional control group. Here, we show that compared to sham surgery, RYGB in DIO mice markedly lowered serum BCAAs most likely by rescuing BCAA breakdown in both liver and white adipose tissues. Importantly, the restored BCAA metabolism following RYGB was independent of caloric intake. Fasting insulin and HOMA-IR were decreased as expected, and serum valine was strongly associated with insulin resistance. While gut hormones such as glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are postulated to mediate various surgery-induced metabolic benefits, mice lacking these hormonal signals (GLP-1R/Y2R double KO) were still able to effectively lower plasma BCAAs and improve glucose tolerance, similar to mice with intact GLP-1 and PYY signaling. On the other hand, mice deficient in fibroblast growth factor 21 (FGF21), another candidate hormone implicated in enhanced glucoregulatory action following RYGB, failed to decrease plasma BCAAs and normalize hepatic BCAA degradation following surgery. This is the first study using an animal model to successfully recapitulate the RYGB-led reduction of circulating BCAAs observed in humans. Our findings unmasked a critical role of FGF21 in mediating the rescue of BCAA metabolism following surgery. It would be interesting to explore the possibility of whether RYGB-induced improvement in glucose homeostasis is partly through decreased BCAAs.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Resistência à Insulina , Humanos , Camundongos , Animais , Obesidade/metabolismo , Diabetes Mellitus Tipo 2/complicações , Aminoácidos de Cadeia Ramificada , Insulina , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose , Glicemia/metabolismo
2.
Am Surg ; 89(8): 3600-3602, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36867071

RESUMO

BACKGROUND: Obesity contributes significant disease burden worldwide, including diabetes, cardiovascular disease, and cancer. While bariatric surgery is the most effective and durable obesity treatment, the mechanisms underlying its effects remain unknown. Although neuro-hormonal mechanisms have been suspected to mediate at least some of the gut-brain axis changes following bariatric surgery, studies examining the intestine and its regionally specific post-gastric alterations to these signals remain unclear. MATERIALS AND METHODS: Vagus nerve recording was performed following the implantation of duodenal feeding tubes in mice. Testing conditions and measurements were made under anesthesia during baseline, nutrient or vehicle solution delivery, and post-delivery. Solutions tested included water, glucose, glucose with an inhibitor of glucose absorption (phlorizin), and a hydrolyzed protein solution. RESULTS: Vagus nerve signaling was detectable from the duodenum and exhibited stable baseline activity without responding to osmotic pressure gradients. Duodenal-delivered glucose and protein robustly increased vagus nerve signaling, but increased signaling was abolished during the co-administration of glucose and phlorizin. DISCUSSION: Gut-brain communication via the vagus nerve emanating from the duodenum is nutrient sensitive and easily measurable in mice. Examination of these signaling pathways may help elucidate how the nutrient signals from the intestine are altered when applied to obesity and bariatric surgery mouse models. Future studies will address quantifying the changes in neuroendocrine nutrient signals in health and obesity, with specific emphasis on identifying the changes associated with bariatric surgery and other gastrointestinal surgery.


Assuntos
Cirurgia Bariátrica , Florizina , Camundongos , Animais , Florizina/metabolismo , Florizina/farmacologia , Encéfalo , Duodeno/cirurgia , Glucose/metabolismo , Glucose/farmacologia , Obesidade , Nutrientes , Nervo Vago/metabolismo
3.
Mol Metab ; 68: 101517, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35644477

RESUMO

BACKGROUND: Bariatric or weight loss surgery is currently the most effective treatment for obesity and metabolic disease. Unlike dieting and pharmacology, its beneficial effects are sustained over decades in most patients, and mortality is among the lowest for major surgery. Because there are not nearly enough surgeons to implement bariatric surgery on a global scale, intensive research efforts have begun to identify its mechanisms of action on a molecular level in order to replace surgery with targeted behavioral or pharmacological treatments. To date, however, there is no consensus as to the critical mechanisms involved. SCOPE OF REVIEW: The purpose of this non-systematic review is to evaluate the existing evidence for specific molecular and inter-organ signaling pathways that play major roles in bariatric surgery-induced weight loss and metabolic benefits, with a focus on Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), in both humans and rodents. MAJOR CONCLUSIONS: Gut-brain communication and its brain targets of food intake control and energy balance regulation are complex and redundant. Although the relatively young science of bariatric surgery has generated a number of hypotheses, no clear and unique mechanism has yet emerged. It seems increasingly likely that the broad physiological and behavioral effects produced by bariatric surgery do not involve a single mechanism, but rather multiple signaling pathways. Besides a need to improve and better validate surgeries in animals, advanced techniques, including inducible, tissue-specific knockout models, and the use of humanized physiological traits will be necessary. State-of-the-art genetically-guided neural identification techniques should be used to more selectively manipulate function-specific pathways.


Assuntos
Cirurgia Bariátrica , Derivação Gástrica , Obesidade Mórbida , Animais , Humanos , Obesidade Mórbida/metabolismo , Cirurgia Bariátrica/efeitos adversos , Obesidade/metabolismo , Derivação Gástrica/métodos , Redução de Peso/fisiologia
4.
Int J Obes (Lond) ; 45(10): 2156-2168, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34230576

RESUMO

Omnivores, including rodents and humans, compose their diets from a wide variety of potential foods. Beyond the guidance of a few basic orosensory biases such as attraction to sweet and avoidance of bitter, they have limited innate dietary knowledge and must learn to prefer foods based on their flavors and postoral effects. This review focuses on postoral nutrient sensing and signaling as an essential part of the reward system that shapes preferences for the associated flavors of foods. We discuss the extensive array of sensors in the gastrointestinal system and the vagal pathways conveying information about ingested nutrients to the brain. Earlier studies of vagal contributions were limited by nonselective methods that could not easily distinguish the contributions of subsets of vagal afferents. Recent advances in technique have generated substantial new details on sugar- and fat-responsive signaling pathways. We explain methods for conditioning flavor preferences and their use in evaluating gut-brain communication. The SGLT1 intestinal sugar sensor is important in sugar conditioning; the critical sensors for fat are less certain, though GPR40 and 120 fatty acid sensors have been implicated. Ongoing work points to particular vagal pathways to brain reward areas. An implication for obesity treatment is that bariatric surgery may alter vagal function.


Assuntos
Preferências Alimentares/psicologia , Aprendizagem , Doenças Metabólicas/dietoterapia , Obesidade/dietoterapia , Animais , Modelos Animais de Doenças , Doenças Metabólicas/fisiopatologia , Camundongos Endogâmicos C57BL/metabolismo , Obesidade/fisiopatologia
5.
Cell Rep Med ; 2(4): 100248, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33948578

RESUMO

Insulin-like growth factor-binding protein (IGFBP)-2 is a circulating biomarker of cardiometabolic health. Here, we report that circulating IGFBP-2 concentrations robustly increase after different bariatric procedures in humans, reaching higher levels after biliopancreatic diversion with duodenal switch (BPD-DS) than after Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). This increase is closely associated with insulin sensitization. In mice and rats, BPD-DS and RYGB operations also increase circulating IGFBP-2 levels, which are not affected by SG or caloric restriction. In mice, Igfbp2 deficiency significantly impairs surgery-induced loss in adiposity and early improvement in insulin sensitivity but does not affect long-term enhancement in glucose homeostasis. This study demonstrates that the modulation of circulating IGFBP-2 may play a role in the early improvement of insulin sensitivity and loss of adiposity brought about by bariatric surgery.


Assuntos
Cirurgia Bariátrica , Fenômenos Bioquímicos/fisiologia , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Obesidade Mórbida/cirurgia , Animais , Cirurgia Bariátrica/métodos , Desvio Biliopancreático/métodos , Gastrectomia/métodos , Derivação Gástrica/métodos , Humanos , Camundongos , Obesidade/cirurgia , Obesidade Mórbida/metabolismo
6.
Bone Rep ; 12: 100241, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31921941

RESUMO

BACKGROUND: Dietary protein restriction is emerging as an alternative approach to treat obesity and glucose intolerance because it markedly increases plasma fibroblast growth factor 21 (FGF21) concentrations. Similarly, dietary restriction of methionine is known to mimic metabolic effects of energy and protein restriction with FGF21 as a required mechanism. However, dietary protein has been shown to be required for normal bone growth, though there is conflicting evidence as to the influence of dietary protein restriction on bone remodeling. The purpose of the current study was to evaluate the effect of dietary protein and methionine restriction on bone in lean and obese mice, and clarify whether FGF21 and general control nonderepressible 2 (GCN2) kinase, that are part of a novel endocrine pathway implicated in the detection of protein restriction, influence the effect of dietary protein restriction on bone. METHODS: Adult wild-type (WT) or Fgf21 KO mice were fed a normal protein (18 kcal%; CON) or low protein (4 kcal%; LP) diet for 2 or 27 weeks. In addition, adult WT or Gcn2 KO mice were fed a CON or LP diet for 27 weeks. Young New Zealand obese (NZO) mice were placed on high-fat diets that provided protein at control (16 kcal%; CON), low levels (4 kcal%) in a high-carbohydrate (LP/HC) or high-fat (LP/HF) regimen, or on high-fat diets (protein, 16 kcal%) that provided methionine at control (0.86%; CON-MR) or low levels (0.17%; MR) for up to 9 weeks. Long bones from the hind limbs of these mice were collected and evaluated with micro-computed tomography (µCT) for changes in trabecular and cortical architecture and mass. RESULTS: In WT mice the 27-week LP diet significantly reduced cortical bone, and this effect was enhanced by deletion of Fgf21 but not Gcn2. This decrease in bone did not appear after 2 weeks on the LP diet. In addition, Fgf21 KO mice had significantly less bone than their WT counterparts. In obese NZO mice dietary protein and methionine restriction altered bone architecture. The changes were mediated by FGF21 due to methionine restriction in the presence of cystine, which did not increase plasma FGF21 levels and did not affect bone architecture. CONCLUSIONS: This study provides direct evidence of a reduction in bone following long-term dietary protein restriction in a mouse model, effects that appear to be mediated by FGF21.

7.
Mol Metab ; 25: 64-72, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31126840

RESUMO

OBJECTIVE: Understanding the mechanisms underlying the remarkable beneficial effects of gastric bypass surgery is important for the development of non-surgical therapies or less invasive surgeries in the fight against obesity and metabolic disease. Although the intestinal L-cell hormones glucagon-like peptide-1 (GLP-1) and peptide tyrosine-tyrosine (PYY) have attracted the most attention, direct tests in humans and rodents with pharmacological blockade or genetic deletion of either the GLP1-receptor (GLP1R) or the Y2-receptor (Y2R) were unable to confirm their critical roles in the beneficial effects gastric bypass surgery on body weight and glucose homeostasis. However, new awareness of the power of combinatorial therapies in the treatment of metabolic disease would suggest that combined blockade of more than one signaling pathway may be necessary to reverse the beneficial effects of bariatric surgery. METHODS: The metabolic effects of high-fat diet and the ability of Roux-en-Y gastric bypass surgery to lower food intake and body weight, as well as improve glucose handling, was tested in GLP1R and Y2R-double knockout (GLP1RKO/Y2RKO) and C57BL6J wildtype (WT) mice. RESULTS: GLP1RKO/Y2RKO and WT mice responded similarly for up to 20 weeks on high-fat diet and 16 weeks after RYGB. There were no significant differences in loss of body and liver weight, fat mass, reduced food intake, relative increase in energy expenditure, improved fasting insulin, glucose tolerance, and insulin tolerance between WT and GLP1RKO/Y2RKO mice after RYGB. CONCLUSIONS: Combined loss of GLP1R and Y2R-signaling was not able to negate or attenuate the beneficial effects of RYGB on body weight and glucose homeostasis in mice, suggesting that a larger number of signaling pathways is involved or that the critical pathway has not yet been identified.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Derivação Gástrica , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cirurgia Bariátrica , Glicemia , Peso Corporal , Metabolismo Energético , Regulação da Expressão Gênica , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Insulina , Resistência à Insulina , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Peptídeo YY , Receptores Acoplados a Proteínas G/genética , Transcriptoma
8.
Sci Rep ; 9(1): 7881, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133715

RESUMO

Gastric bypass surgery is the most effective treatment and is often the only option for subjects with severe obesity. However, investigation of critical molecular mechanisms involved has been hindered by confounding of specific effects of surgery and side effects associated with acute surgical trauma. Here, we dissociate the two components by carrying out surgery in the lean state and testing its effectiveness to prevent diet-induced obesity later in life. Body weight and composition of female mice with RYGB performed at 6 weeks of age were not significantly different from sham-operated and age-matched non-surgical mice at the time of high-fat diet exposure 12 weeks after surgery. These female mice were completely protected from high-fat diet-induced obesity and accompanying metabolic impairments for up to 50 weeks. Similar effects were seen in male mice subjected to RYGB at 5-6 weeks, although growth was slightly inhibited and protection from diet-induced obesity was less complete. The findings confirm that RYGB does not indiscriminately lower body weight but specifically prevents excessive diet-induced obesity and ensuing metabolic impairments. This prevention of obesity model should be crucial for identifying the molecular mechanisms underlying gastric bypass surgery.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Derivação Gástrica , Obesidade/etiologia , Obesidade/prevenção & controle , Envelhecimento , Animais , Glicemia/análise , Composição Corporal , Peso Corporal , Ingestão de Alimentos , Metabolismo Energético , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/metabolismo
9.
Nutrients ; 11(3)2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30857366

RESUMO

BACKGROUND/GOALS: The gut hormone peptide YY (PYY) secreted from intestinal L-cells has been implicated in the mechanisms of satiation via Y2-receptor (Y2R) signaling in the brain and periphery and is a major candidate for mediating the beneficial effects of bariatric surgery on appetite and body weight. METHODS: Here we assessed the role of Y2R signaling in the response to low- and high-fat diets and its role in the effects of Roux-en-Y gastric bypass (RYGB) surgery on body weight, body composition, food intake, energy expenditure and glucose handling, in global Y2R-deficient (Y2RKO) and wildtype (WT) mice made obese on high-fat diet. RESULTS: Both male and female Y2RKO mice responded normally to low- and high-fat diet in terms of body weight, body composition, fasting levels of glucose and insulin, as well as glucose and insulin tolerance for up to 30 weeks of age. Contrary to expectations, obese Y2RKO mice also responded similarly to RYGB compared to WT mice for up to 20 weeks after surgery, with initial hypophagia, sustained body weight loss, and significant improvements in fasting insulin, glucose tolerance, insulin resistance (HOMA-IR), and liver weight compared to sham-operated mice. Furthermore, non-surgical Y2RKO mice weight-matched to RYGB showed the same improvements in glycemic control as Y2RKO mice with RYGB that were similar to WT mice. CONCLUSIONS: PYY signaling through Y2R is not required for the normal appetite-suppressing and body weight-lowering effects of RYGB in this global knockout mouse model. Potential compensatory adaptations of PYY signaling through other receptor subtypes or other gut satiety hormones such as glucagon-like peptide-1 (GLP-1) remain to be investigated.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Derivação Gástrica , Obesidade/cirurgia , Peptídeo YY/genética , Receptores dos Hormônios Gastrointestinais/genética , Animais , Masculino , Camundongos , Camundongos Knockout
10.
J Urol ; 201(4): 810-814, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30195847

RESUMO

PURPOSE: Ureteral complications following renal transplantation are more common in children than in adults. We identify potential risk factors for ureteral complications in pediatric patients. MATERIALS AND METHODS: We retrospectively studied a cohort of patients who underwent renal transplantation at Lurie Children's Hospital between 2004 and 2016. We analyzed the associations between patient characteristics, operative factors, graft characteristics and postoperative complications. RESULTS: A total of 224 renal transplantations in 219 patients were identified. Preexisting bladder pathology was present in 25% of cases. Overall rate of ureteral complications was 16%, with symptomatic vesicoureteral reflux being the most common. Ureteral complications were seen significantly more frequently in patients with underlying bladder pathology (26% vs 12%, p = 0.01). Rate of postoperative vesicoureteral reflux in patients with bladder pathology was lower when a urologist performed the reimplantation but the difference was not statistically significant (15% vs 27%, p = 0.35). Urologists were significantly more likely to perform the ureteral anastomosis in patients on clean intermittent catheterization (85% vs 43%, p = 0.004) and in patients with a history of complex bladder reconstruction (75% vs 28%, p <0.001). CONCLUSIONS: Patients with existing bladder pathology are at increased risk for ureteral complications, particularly vesicoureteral reflux. Since pediatric urologists routinely perform ureteral reimplantation in patients with existing bladder pathology, these patients may benefit from a multidisciplinary approach between urology and transplant surgery at renal transplantation.


Assuntos
Transplante de Rim/efeitos adversos , Doenças Ureterais/etiologia , Refluxo Vesicoureteral/etiologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Rejeição de Enxerto , Humanos , Masculino , Pediatria , Complicações Pós-Operatórias/fisiopatologia , Complicações Pós-Operatórias/cirurgia , Prognóstico , Reoperação , Estudos Retrospectivos , Medição de Risco , Doenças Ureterais/fisiopatologia , Doenças Ureterais/cirurgia , Refluxo Vesicoureteral/fisiopatologia , Refluxo Vesicoureteral/cirurgia
11.
Obes Surg ; 28(10): 3227-3236, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29770924

RESUMO

BACKGROUND AND PURPOSE: Roux-en-Y gastric bypass surgery (RYGB) remains one of the most effective treatments for obesity and type 2 diabetes. Despite this, the mechanisms through which it acts are still not well understood. Bile acid signaling through the transmembrane G-protein-coupled receptor TGR5 has been shown to have significant effects on metabolism and has recently been reported to be necessary for the full effects of vertical sleeve gastrectomy (VSG), a bariatric surgery with similar effects to RYGB. The goal of the current study is therefore to investigate the role of bile acid signaling through TGR5 to see if it is necessary to obtain the full effects of RYGB. METHODS: High-fat diet-induced obese TGR5-/- and wildtype mice (WT) were subjected to RYGB, sham surgery, or weight matching (WM) to RYGB mice via caloric restriction. Body weight, body composition, food intake, energy expenditure, glucose tolerance, insulin sensitivity, and liver weight were measured. RESULTS: Although the difference in fat mass 20 weeks after surgery between RYGB and sham-operated mice was slightly reduced in TGR5-/- mice when compared to wildtype mice, loss of body weight and fat mass from preoperative levels, reduction of food intake, increase of energy expenditure, and improvement in glycemic control were similar in the two genotypes. Furthermore, improvements in glycemic control were similar in non-surgical mice weight-matched to RYGB. CONCLUSIONS: We conclude that bile acid signaling through TGR5 is not required for the beneficial effects of RYGB in the mouse and that RYGB and VSG may achieve their similar beneficial effects through different mechanisms.


Assuntos
Derivação Gástrica/métodos , Obesidade/metabolismo , Obesidade/cirurgia , Receptores Acoplados a Proteínas G/genética , Redução de Peso/fisiologia , Anastomose em-Y de Roux/métodos , Animais , Glicemia/metabolismo , Composição Corporal/genética , Dieta Hiperlipídica , Ingestão de Alimentos , Metabolismo Energético/genética , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/patologia , Redução de Peso/genética
12.
J Urol ; 199(5): 1296-1301, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29198998

RESUMO

PURPOSE: Patients with failed hypospadias repair are a challenging population for pediatric and reconstructive urologists. We describe our long-term outcomes and factors associated with complications of repeat hypospadias repair. MATERIALS AND METHODS: We retrospectively reviewed the records of 32 adult patients with a history of hypospadias repair who required subsequent urethroplasty between 2002 and 2012. Data on the presenting complaint, past medical and surgical history, demographic data, surgical approach, intraoperative findings and complications were collected and analyzed. RESULTS: Median patient age at urethroplasty was 32 years. Stricture of the penile urethra was the most common presentation. Urethroplasty was done in 30 patients as stricture treatment, 1 underwent perineal urethrostomy and 1 underwent diverticulectomy. Two-stage repair was performed in 90% of the men who underwent urethroplasty. The initial success rate was 83% in patients who underwent 1 or 2-stage urethroplasty. At a median followup of 9.5 years complications included 4 recurrent strictures and 1 fistula. Patient age, previous interventions, stricture length, hair present at the time of repair, the need to excise the urethral plate and the number of stages were not associated with complications or recurrence. If a graft was required, skin grafts were significantly associated with recurrence compared to buccal mucosa grafts. CONCLUSIONS: Excellent outcomes can be achieved using a 2-stage approach with replacement or augmentation of the urethral plate in adults with failed hypospadias repair. In our experience buccal mucosa appears to be associated with fewer complications and less stricture recurrence than skin grafts.


Assuntos
Hipospadia/cirurgia , Procedimentos de Cirurgia Plástica/efeitos adversos , Complicações Pós-Operatórias/cirurgia , Reoperação/estatística & dados numéricos , Estreitamento Uretral/cirurgia , Procedimentos Cirúrgicos Urológicos Masculinos/efeitos adversos , Adolescente , Adulto , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/transplante , Complicações Pós-Operatórias/etiologia , Procedimentos de Cirurgia Plástica/métodos , Recidiva , Estudos Retrospectivos , Transplante de Pele/efeitos adversos , Transplante de Pele/métodos , Fatores de Tempo , Resultado do Tratamento , Uretra/patologia , Uretra/cirurgia , Estreitamento Uretral/etiologia , Procedimentos Cirúrgicos Urológicos Masculinos/métodos , Adulto Jovem
13.
Clin Colon Rectal Surg ; 30(3): 207-214, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28684939

RESUMO

Urologists routinely use bowel in the reconstruction of the urinary tract. With an increasing prevalence of urinary diversions, it is important for surgeons to have a basic understanding of varied use and configuration of bowel segments in urinary tract reconstruction that may be encountered during abdominal surgery. The aim of this review article is to provide an overview of the various reconstructive urological surgeries requiring bowel and to guide physicians on how to manage these patients with urinary diversions.

14.
Urology ; 108: 17-21, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28705576

RESUMO

OBJECTIVE: To examine the results of scrotal ultrasounds (US) conducted for scrotal or testicular pain and review the pathologic findings of orchiectomies done for lesions that were suspicious for malignancy on US. MATERIALS AND METHODS: We retrospectively reviewed the indications and findings of all scrotal US completed at our institution from 2002 to 2014. If a patient underwent an orchiectomy for an intratesticular lesion that was concerning for malignancy on US, the pathology report was also reviewed. RESULTS: There were 18,593 scrotal US performed, with 7,668 (41.2%) conducted for scrotal pain. Of the US performed for pain, 80.4% revealed benign or normal findings, and only 2.2% demonstrated a finding that is an absolute indication for surgery (intratesticular lesion suspicious for malignancy 0.8%, abscess 0.7%, torsion 0.6%, infiltrative process such as lymphoma 0.1%). For those patients undergoing an orchiectomy, 75% had malignancy on pathologic analysis. CONCLUSION: The majority of the 7668 US performed to evaluate scrotal or testicular pain reveal normal or benign findings. A low percentage demonstrates a finding that necessitates urgent or emergent surgery.


Assuntos
Orquiectomia , Dor/diagnóstico , Escroto/diagnóstico por imagem , Doenças Testiculares/diagnóstico , Testículo/diagnóstico por imagem , Seguimentos , Humanos , Masculino , Dor/etiologia , Dor/cirurgia , Estudos Retrospectivos , Escroto/cirurgia , Doenças Testiculares/complicações , Testículo/cirurgia , Ultrassonografia
15.
J Neurosci ; 37(25): 6053-6065, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28539422

RESUMO

The lateral hypothalamus (LHA) integrates reward and appetitive behavior and is composed of many overlapping neuronal populations. Recent studies associated LHA GABAergic neurons (LHA GABA ), which densely innervate the ventral tegmental area (VTA), with modulation of food reward and consumption; yet, LHA GABA projections to the VTA exclusively modulated food consumption, not reward. We identified a subpopulation of LHA GABA neurons that coexpress the neuropeptide galanin (LHA Gal ). These LHA Gal neurons also modulate food reward, but lack direct VTA innervation. We hypothesized that LHA Gal neurons may represent a subpopulation of LHA GABA neurons that mediates food reward independent of direct VTA innervation. We used chemogenetic activation of LHA Gal or LHA GABA neurons in mice to compare their role in feeding behavior. We further analyzed locomotor behavior to understand how differential VTA connectivity and transmitter release in these LHA neurons influences this behavior. LHA Gal or LHA GABA neuronal activation both increased operant food-seeking behavior, but only activation of LHA GABA neurons increased overall chow consumption. Additionally, LHA Gal or LHA GABA neuronal activation similarly induced locomotor activity, but with striking differences in modality. Activation of LHA GABA neurons induced compulsive-like locomotor behavior; while LHA Gal neurons induced locomotor activity without compulsivity. Thus, LHA Gal neurons define a subpopulation of LHA GABA neurons without direct VTA innervation that mediate noncompulsive food-seeking behavior. We speculate that the striking difference in compulsive-like locomotor behavior is also based on differential VTA innervation. The downstream neural network responsible for this behavior and a potential role for galanin as neuromodulator remains to be identified.SIGNIFICANCE STATEMENT The lateral hypothalamus (LHA) regulates motivated feeding behavior via GABAergic LHA neurons. The molecular identity of LHA GABA neurons is heterogeneous and largely undefined. Here we introduce LHA Gal neurons as a subset of LHA GABA neurons that lack direct innervation of the ventral tegmental area (VTA). LHA Gal neurons are sufficient to drive motivated feeding and locomotor activity similar to LHA GABA neurons, but without inducing compulsive-like behaviors, which we propose to require direct VTA innervation. Our study integrates galanin-expressing LHA neurons into our current understanding of the neuronal circuits and molecular mechanisms of the LHA that contribute to motivated feeding behaviors.


Assuntos
Galanina/biossíntese , Região Hipotalâmica Lateral/fisiologia , Atividade Motora/fisiologia , Neurônios/fisiologia , Recompensa , Ácido gama-Aminobutírico/fisiologia , Animais , Antipsicóticos/farmacologia , Clozapina/farmacologia , Comportamento Compulsivo , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Metabolismo Energético/fisiologia , Alimentos , Região Hipotalâmica Lateral/citologia , Região Hipotalâmica Lateral/metabolismo , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurotransmissores/metabolismo
16.
Obes Surg ; 27(9): 2424-2433, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28386755

RESUMO

BACKGROUND: Weight regain and type-2 diabetes relapse has been reported in a significant proportion of vertical sleeve gastrectomy (VSG) patients in some studies, but definitive conclusions regarding the long-term comparative effectiveness of VSG and Roux-en-Y gastric bypass (RYGB) surgery are lacking both in humans and rodent models. This study's objective was to compare the effects of murine models of VSG and RYGB surgery on body weight, body composition, food intake, energy expenditure, and glycemic control. METHODS: VSG, RYGB, and sham surgery was performed in high-fat diet-induced obese mice, and the effects on body weight and glycemic control were observed for a period of 12 weeks. RESULTS: After the initial weight loss, VSG mice regained significant amounts of body weight and fat mass that were only marginally lower than in sham-operated mice. In contrast, RYGB produced sustained loss of body weight and fat mass up to 12 weeks and drastically improved fasting insulin and HOMA-IR compared with sham-operated mice. Using weight-matched control groups, we also found that the adaptive hypometabolic response to weight loss was blunted by both VSG and RYGB, and that despite large weight/fat regain, fasting insulin and HOMA-IR were markedly improved, but not reversed, in VSG mice. CONCLUSIONS: VSG is less effective to lastingly suppress body weight and improve glycemic control compared with RYGB in mice. Given similar observations in many human studies, the run towards replacing RYGB with VSG is premature and should await carefully controlled randomized long-term trials with VSG and RYGB.


Assuntos
Glicemia/fisiologia , Gastrectomia , Derivação Gástrica , Redução de Peso/fisiologia , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Gastrectomia/métodos , Gastrectomia/estatística & dados numéricos , Derivação Gástrica/métodos , Derivação Gástrica/estatística & dados numéricos , Camundongos , Camundongos Obesos , Obesidade/cirurgia
17.
Mol Metab ; 5(10): 1006-1014, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27689013

RESUMO

OBJECTIVE: The mechanisms by which bariatric surgeries so effectively and lastingly reduce body weight and normalize metabolic dysfunction are not well understood. Fibroblast growth fator-21 (FGF21) is a key regulator of metabolism and is currently considered for treatment of obesity. Although elevated by acute food deprivation, it is downregulated after weight loss induced by chronic calorie restriction but not after Roux-en-Y gastric bypass surgery. Therefore, the goal of the present study was to assess the role of FGF21-signaling in the beneficial effects of Roux-en-Y gastric bypass surgery (RYGB). METHODS: High-fat diet-induced obese FGF21-deficient (FGF21(-/-)) and wildtype (WT) mice were subjected to RYGB, sham surgery, or caloric restriction to match body weight of RYGB mice. Body weight, body composition, food intake, energy expenditure, glucose tolerance, and insulin sensitivity, as well as plasma levels and hepatic mRNA expression of FGF21 were measured. RESULTS: Hepatic expression and plasma levels of FGF21 are higher after RYGB compared with similar weight loss induced by caloric restriction, suggesting that elevated FGF21 might play a role in preventing increased hunger and weight regain after RYGB. However, although the body weight differential between RYGB and sham surgery was significantly reduced in FGF21(-/-) mice, RYGB induced similarly sustained body weight and fat mass loss, initial reduction of food intake, increased energy expenditure, and improvements in glycemic control in FGF21(-/-) and WT mice. CONCLUSIONS: FGF21 signaling is not a critical single factor for the beneficial metabolic effects of RYGB. This may open up the possibility to use FGF21 as adjuvant therapy in patients with ineffective bariatric surgeries.

18.
Obesity (Silver Spring) ; 24(3): 654-60, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26847390

RESUMO

OBJECTIVE: Roux-en-Y gastric bypass surgery (RYGB) results in sustained lowering of body weight in most patients, but the mechanisms involved are poorly understood. The aim of this study was to obtain support for the notion that reprogramming of defended body weight, rather than passive restriction of energy intake, is a fundamental mechanism of RYGB. METHODS: Male C57BL6J mice reaching different degrees of obesity on a high-fat diet either with ad libitum access or with caloric restriction (weight-reduced) were subjected to RYGB. RESULTS: RYGB-induced weight loss and fat mass loss were proportional to pre-surgical levels, with moderately obese mice losing less body weight and fat compared with very obese mice. Remarkably, mice that were weight-reduced to the level of chow controls before surgery immediately gained weight after surgery, exclusively accounted for by lean mass gain. CONCLUSIONS: The results provide additional evidence for reprogramming of a new defended body weight as an important principle by which RYGB lastingly suppresses body weight. RYGB appears to selectively abolish defense of a higher fat mass level, while remaining sensitive to the defense of lean mass. The molecular and physiological mechanisms underlying this reprogramming remain to be elucidated.


Assuntos
Peso Corporal/fisiologia , Derivação Gástrica , Camundongos Obesos/cirurgia , Obesidade/cirurgia , Aumento de Peso , Animais , Restrição Calórica , Dieta Hiperlipídica , Modelos Animais de Doenças , Humanos , Masculino , Camundongos
19.
Obes Surg ; 26(9): 2173-2182, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26781597

RESUMO

BACKGROUND: The mechanisms by which Roux-en-Y gastric bypass surgery (RYGB) so effectively lowers body weight and improves glycemic control are not well understood, and murine models are essential for identifying the crucial signaling pathways involved. The aim of this study is to characterize the time course of RYGB on body weight, body composition, food intake, and energy expenditure in diet-induced obese mice and establish a tissue bank for global "omics" or targeted biochemical and structural analyses. METHODS: High-fat diet-induced obese mice were subjected to RYGB using an improved surgical technique with a small gastric pouch. The effects on body weight, body composition, food intake, and energy expenditure were compared to sham surgery, high-fat diet-restricted weight-matched controls, and never-obese chow-fed controls. RESULTS: Without mortality or complications, RYGB surgery in high-fat diet-induced obese mice gradually decreased body weight to a plateau that was more or less sustained for up to 12 weeks (33 g, -18 %, p < 0.01) and significantly lower compared with sham-operated mice (51 g, +25 %, p < 0.01), but higher (+18 %, p < 0.01) than age-matched, chow-fed control mice (27 g). Energy intake after RYGB was significantly suppressed compared to sham only for the first 10 days, but significantly higher compared to weight-matched mice. Energy expenditure after RYGB was higher throughout the study compared with weight-matched, but not sham animals. CONCLUSIONS: RYGB surgery in diet-induced obese mice results in similar body weight and body composition changes as observed in humans, but in contrast with humans, this is achieved mainly through increased energy expenditure rather than decreased food intake.


Assuntos
Composição Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Derivação Gástrica/métodos , Derivação Gástrica/estatística & dados numéricos , Animais , Peso Corporal , Dieta Hiperlipídica , Modelos Animais de Doenças , Camundongos , Camundongos Obesos , Obesidade
20.
Handb Exp Pharmacol ; 233: 173-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26578523

RESUMO

The continuous rise in obesity is a major concern for future healthcare management. Many strategies to control body weight focus on a permanent modification of food intake with limited success in the long term. Metabolism or energy expenditure is the other side of the coin for the regulation of body weight, and strategies to enhance energy expenditure are a current focus for obesity treatment, especially since the (re)-discovery of the energy depleting brown adipose tissue in adult humans. Conversely, several human illnesses like neurodegenerative diseases, cancer, or autoimmune deficiency syndrome suffer from increased energy expenditure and severe weight loss. Thus, strategies to modulate energy expenditure to target weight gain or loss would improve life expectancies and quality of life in many human patients. The aim of this book chapter is to give an overview of our current understanding and recent progress in energy expenditure control with specific emphasis on central control mechanisms.


Assuntos
Encéfalo/fisiologia , Metabolismo Energético , Adaptação Fisiológica , Animais , Tronco Encefálico/fisiologia , Humanos , Hipotálamo/fisiologia , Termogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA