Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260457

RESUMO

Neuroblastoma is a highly lethal childhood tumor derived from differentiation-arrested neural crest cells1,2. Like all cancers, its growth is fueled by metabolites obtained from either circulation or local biosynthesis3,4. Neuroblastomas depend on local polyamine biosynthesis, with the inhibitor difluoromethylornithine showing clinical activity5. Here we show that such inhibition can be augmented by dietary restriction of upstream amino acid substrates, leading to disruption of oncogenic protein translation, tumor differentiation, and profound survival gains in the TH-MYCN mouse model. Specifically, an arginine/proline-free diet decreases the polyamine precursor ornithine and augments tumor polyamine depletion by difluoromethylornithine. This polyamine depletion causes ribosome stalling, unexpectedly specifically at adenosine-ending codons. Such codons are selectively enriched in cell cycle genes and low in neuronal differentiation genes. Thus, impaired translation of these codons, induced by the diet-drug combination, favors a pro-differentiation proteome. These results suggest that the genes of specific cellular programs have evolved hallmark codon usage preferences that enable coherent translational rewiring in response to metabolic stresses, and that this process can be targeted to activate differentiation of pediatric cancers.

2.
Commun Biol ; 6(1): 949, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723198

RESUMO

Pediatric patients with recurrent and refractory cancers are in most need for new treatments. This study developed patient-derived-xenograft (PDX) models within the European MAPPYACTS cancer precision medicine trial (NCT02613962). To date, 131 PDX models were established following heterotopical and/or orthotopical implantation in immunocompromised mice: 76 sarcomas, 25 other solid tumors, 12 central nervous system tumors, 15 acute leukemias, and 3 lymphomas. PDX establishment rate was 43%. Histology, whole exome and RNA sequencing revealed a high concordance with the primary patient's tumor profile, human leukocyte-antigen characteristics and specific metabolic pathway signatures. A detailed patient molecular characterization, including specific mutations prioritized in the clinical molecular tumor boards are provided. Ninety models were shared with the IMI2 ITCC Pediatric Preclinical Proof-of-concept Platform (IMI2 ITCC-P4) for further exploitation. This PDX biobank of unique recurrent childhood cancers provides an essential support for basic and translational research and treatments development in advanced pediatric malignancies.


Assuntos
Leucemia , Neoplasias , Animais , Criança , Humanos , Camundongos , Bancos de Espécimes Biológicos , Modelos Animais de Doenças , Xenoenxertos , Neoplasias/genética , Medicina de Precisão , Ensaios Clínicos como Assunto
4.
Eur J Cancer ; 157: 268-277, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34543871

RESUMO

AIM: Arms E and F of the AcSé-ESMART phase I/II platform trial aimed to define the recommended dose and preliminary activity of the dual mTORC1/2 inhibitor vistusertib as monotherapy and with topotecan-temozolomide in a molecularly enriched population of paediatric patients with relapsed/refractory malignancies. In addition, we evaluated genetic phosphatidylinositol 3-kinase (PI3K)/AKT/ mammalian (or mechanistic) target of rapamycin (mTOR) pathway alterations across the Molecular Profiling for Paediatric and Young Adult Cancer Treatment Stratification (MAPPYACTS) trial (NCT02613962). EXPERIMENTAL DESIGN AND RESULTS: Four patients were treated in arm E and 10 in arm F with a median age of 14.3 years. Main diagnoses were glioma and sarcoma. Dose escalation was performed as per the continuous reassessment method, expansion in an Ensign design. The vistusertib single agent administered at 75 mg/m2 twice a day (BID) on 2 days/week and vistusertib 30 mg/m2 BID on 3 days/week combined with temozolomide 100 mg/m2/day and topotecan 0.50 mg/m2/day on the first 5 days of each 4-week cycle were safe. Treatment was well tolerated with the main toxicity being haematological. Pharmacokinetics indicates equivalent exposure in children compared with adults. Neither tumour response nor prolonged stabilisation was observed, including in the 12 patients whose tumours exhibited PI3K/AKT/mTOR pathway alterations. Advanced profiling across relapsed/refractory paediatric cancers of the MAPPYACTS cohort shows genetic alterations associated with this pathway in 28.0% of patients, with 10.5% carrying mutations in the core pathway genes. CONCLUSIONS: Vistusertib was well tolerated in paediatric patients. Study arms were terminated because of the absence of tumour responses and insufficient target engagement of vistusertib observed in adult trials. Targeting the PI3K/AKT/mTOR pathway remains a therapeutic avenue to be explored in paediatric patients. CLINICAL TRIAL IDENTIFIER: NCT2813135.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Benzamidas/administração & dosagem , Morfolinas/administração & dosagem , Neoplasias/tratamento farmacológico , Pirimidinas/administração & dosagem , Administração Oral , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Benzamidas/efeitos adversos , Criança , Pré-Escolar , Feminino , Mutação com Ganho de Função , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Morfolinas/efeitos adversos , Estadiamento de Neoplasias , Neoplasias/diagnóstico , Neoplasias/genética , Pirimidinas/efeitos adversos , Temozolomida/administração & dosagem , Temozolomida/efeitos adversos , Topotecan/administração & dosagem , Topotecan/efeitos adversos , Resultado do Tratamento , Adulto Jovem
5.
J Clin Oncol ; 39(32): 3546-3560, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34347542

RESUMO

PURPOSE: AcSé-ESMART is a proof-of-concept, phase I or II, platform trial, designed to explore targeted agents in a molecularly enriched cancer population. Arms A and B aimed to define the recommended phase II dose and activity of the CDK4/6 inhibitor ribociclib with topotecan and temozolomide (TOTEM) or everolimus, respectively, in children with recurrent or refractory malignancies. PATIENTS AND METHODS: Ribociclib was administered orally once daily for 16 days after TOTEM for 5 days (arm A) or for 21 days with everolimus orally once daily continuously in a 28-day cycle (arm B). Dose escalation followed the continuous reassessment method, and activity assessment the Ensign design. Arms were enriched on the basis of molecular alterations in the cell cycle or PI3K/AKT/mTOR pathways. RESULTS: Thirty-two patients were included, 14 in arm A and 18 in arm B, and 31 were treated. Fourteen patients had sarcomas (43.8%), and 13 brain tumors (40.6%). Main toxicities were leukopenia, neutropenia, and lymphopenia. The recommended phase II dose was ribociclib 260 mg/m2 once a day, temozolomide 100 mg/m2 once a day, and topotecan 0.5 mg/m2 once a day (arm A) and ribociclib 175 mg/m2 once a day and everolimus 2.5 mg/m2 once a day (arm B). Pharmacokinetic analyses confirmed the drug-drug interaction of ribociclib on everolimus exposure. Two patients (14.3%) had stable disease as best response in arm A, and seven (41.2%) in arm B, including one patient with T-acute lymphoblastic leukemia with significant blast count reduction. Alterations considered for enrichment were present in 25 patients (81%) and in eight of nine patients with stable disease; the leukemia exhibited CDKN2A/B and PTEN deficiency. CONCLUSION: Ribociclib in combination with TOTEM or everolimus was well-tolerated. The observed activity signals initiated a follow-up study of the ribociclib-everolimus combination in a population enriched with molecular alterations within both pathways.


Assuntos
Aminopiridinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Everolimo/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Purinas/uso terapêutico , Temozolomida/uso terapêutico , Topotecan/uso terapêutico , Adolescente , Fatores Etários , Aminopiridinas/efeitos adversos , Aminopiridinas/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Criança , Pré-Escolar , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Everolimo/efeitos adversos , Everolimo/farmacocinética , Feminino , Humanos , Lactente , Masculino , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Purinas/efeitos adversos , Purinas/farmacocinética , Temozolomida/efeitos adversos , Temozolomida/farmacocinética , Fatores de Tempo , Topotecan/efeitos adversos , Topotecan/farmacocinética , Resultado do Tratamento
6.
Cell Metab ; 29(2): 417-429.e4, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30449684

RESUMO

Elevations in branched-chain amino acids (BCAAs) associate with numerous systemic diseases, including cancer, diabetes, and heart failure. However, an integrated understanding of whole-body BCAA metabolism remains lacking. Here, we employ in vivo isotopic tracing to systemically quantify BCAA oxidation in healthy and insulin-resistant mice. We find that most tissues rapidly oxidize BCAAs into the tricarboxylic acid (TCA) cycle, with the greatest quantity occurring in muscle, brown fat, liver, kidneys, and heart. Notably, pancreas supplies 20% of its TCA carbons from BCAAs. Genetic and pharmacologic suppression of branched-chain alpha-ketoacid dehydrogenase kinase, a clinically targeted regulatory kinase, induces BCAA oxidation primarily in skeletal muscle of healthy mice. While insulin acutely increases BCAA oxidation in cardiac and skeletal muscle, chronically insulin-resistant mice show blunted BCAA oxidation in adipose tissues and liver, shifting BCAA oxidation toward muscle. Together, this work provides a quantitative framework for understanding systemic BCAA oxidation in health and insulin resistance.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Ciclo do Ácido Cítrico , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Oxirredução
7.
Nature ; 554(7690): 128-132, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29364879

RESUMO

Folates enable the activation and transfer of one-carbon units for the biosynthesis of purines, thymidine and methionine. Antifolates are important immunosuppressive and anticancer agents. In proliferating lymphocytes and human cancers, mitochondrial folate enzymes are particularly strongly upregulated. This in part reflects the need for mitochondria to generate one-carbon units and export them to the cytosol for anabolic metabolism. The full range of uses of folate-bound one-carbon units in the mitochondrial compartment itself, however, has not been thoroughly explored. Here we show that loss of the catalytic activity of the mitochondrial folate enzyme serine hydroxymethyltransferase 2 (SHMT2), but not of other folate enzymes, leads to defective oxidative phosphorylation in human cells due to impaired mitochondrial translation. We find that SHMT2, presumably by generating mitochondrial 5,10-methylenetetrahydrofolate, provides methyl donors to produce the taurinomethyluridine base at the wobble position of select mitochondrial tRNAs. Mitochondrial ribosome profiling in SHMT2-knockout human cells reveals that the lack of this modified base causes defective translation, with preferential mitochondrial ribosome stalling at certain lysine (AAG) and leucine (UUG) codons. This results in the impaired expression of respiratory chain enzymes. Stalling at these specific codons also occurs in certain inborn errors of mitochondrial metabolism. Disruption of whole-cell folate metabolism, by either folate deficiency or antifolate treatment, also impairs the respiratory chain. In summary, mammalian mitochondria use folate-bound one-carbon units to methylate tRNA, and this modification is required for mitochondrial translation and thus oxidative phosphorylation.


Assuntos
Ácido Fólico/metabolismo , Mitocôndrias/metabolismo , Biossíntese de Proteínas , RNA de Transferência/química , RNA de Transferência/metabolismo , Aminoidrolases/metabolismo , Biocatálise , Proteínas de Transporte/metabolismo , Códon/genética , Transporte de Elétrons , Antagonistas do Ácido Fólico/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Glicina Hidroximetiltransferase/deficiência , Glicina Hidroximetiltransferase/metabolismo , Guanosina/metabolismo , Células HCT116 , Células HEK293 , Humanos , Leucina/genética , Lisina/genética , Metilação/efeitos dos fármacos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Enzimas Multifuncionais/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , RNA de Transferência/genética , Proteínas de Ligação a RNA , Ribossomos/metabolismo , Sarcosina/metabolismo , Tetra-Hidrofolatos/metabolismo , Nucleotídeos de Timina/biossíntese
8.
Nature ; 551(7678): 115-118, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29045397

RESUMO

Mammalian tissues are fuelled by circulating nutrients, including glucose, amino acids, and various intermediary metabolites. Under aerobic conditions, glucose is generally assumed to be burned fully by tissues via the tricarboxylic acid cycle (TCA cycle) to carbon dioxide. Alternatively, glucose can be catabolized anaerobically via glycolysis to lactate, which is itself also a potential nutrient for tissues and tumours. The quantitative relevance of circulating lactate or other metabolic intermediates as fuels remains unclear. Here we systematically examine the fluxes of circulating metabolites in mice, and find that lactate can be a primary source of carbon for the TCA cycle and thus of energy. Intravenous infusions of 13C-labelled nutrients reveal that, on a molar basis, the circulatory turnover flux of lactate is the highest of all metabolites and exceeds that of glucose by 1.1-fold in fed mice and 2.5-fold in fasting mice; lactate is made primarily from glucose but also from other sources. In both fed and fasted mice, 13C-lactate extensively labels TCA cycle intermediates in all tissues. Quantitative analysis reveals that during the fasted state, the contribution of glucose to tissue TCA metabolism is primarily indirect (via circulating lactate) in all tissues except the brain. In genetically engineered lung and pancreatic cancer tumours in fasted mice, the contribution of circulating lactate to TCA cycle intermediates exceeds that of glucose, with glutamine making a larger contribution than lactate in pancreatic cancer. Thus, glycolysis and the TCA cycle are uncoupled at the level of lactate, which is a primary circulating TCA substrate in most tissues and tumours.


Assuntos
Ciclo do Ácido Cítrico , Glucose/metabolismo , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Animais , Glicemia/metabolismo , Encéfalo/metabolismo , Carbono/sangue , Carbono/metabolismo , Jejum/sangue , Jejum/metabolismo , Glutamina/sangue , Glutamina/metabolismo , Glicólise , Camundongos , Músculos/metabolismo , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/metabolismo
9.
Cell Metab ; 23(6): 1140-1153, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27211901

RESUMO

One-carbon (1C) units for purine and thymidine synthesis can be generated from serine by cytosolic or mitochondrial folate metabolism. The mitochondrial 1C pathway is consistently overexpressed in cancer. Here, we show that most but not all proliferating mammalian cell lines use the mitochondrial pathway as the default for making 1C units. Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated mitochondrial pathway knockout activates cytosolic 1C-unit production. This reversal in cytosolic flux is triggered by depletion of a single metabolite, 10-formyl-tetrahydrofolate (10-formyl-THF), and enables rapid cell growth in nutrient-replete conditions. Loss of the mitochondrial pathway, however, renders cells dependent on extracellular serine to make 1C units and on extracellular glycine to make glutathione. HCT-116 colon cancer xenografts lacking mitochondrial 1C pathway activity generate the 1C units required for growth by cytosolic serine catabolism. Loss of both pathways precludes xenograft formation. Thus, either mitochondrial or cytosolic 1C metabolism can support tumorigenesis, with the mitochondrial pathway required in nutrient-poor conditions.


Assuntos
Carbono/metabolismo , Citosol/metabolismo , Ácido Fólico/metabolismo , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Sistemas CRISPR-Cas/genética , Compartimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Citosol/efeitos dos fármacos , Formiatos/metabolismo , Técnicas de Inativação de Genes , Biblioteca Gênica , Glicina/farmacologia , Glicina Hidroximetiltransferase/metabolismo , Células HCT116 , Células HEK293 , Humanos , Leucovorina/análogos & derivados , Leucovorina/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Mitocôndrias/efeitos dos fármacos , Mutação/genética , NADP/metabolismo , Ribonucleotídeos/metabolismo , Serina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Eur J Hum Genet ; 24(2): 258-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26014432

RESUMO

Screening for founder mutations in BRCA1 and BRCA2 has been discussed as a cost-effective testing strategy in certain populations. In this study, comprehensive BRCA1 and BRCA2 testing was performed in a routine diagnostic setting. The prevalence of the BRCA1 stop mutation c.4183C>T, p.(Gln1395Ter), was determined in unselected breast and ovarian cancer patients from different regions in the Tyrol. Cancer registry data were used to evaluate the impact of this mutation on regional cancer incidence. The mutation c.4183C>T was detected in 30.4% of hereditary BRCA1-associated breast and ovarian cancer patients in our cohort. It was also identified in 4.1% of unselected (26% of unselected triple negative) Tyrolean breast cancer patients and 6.8% of unselected ovarian cancer patients from the Lower Inn Valley (LIV) region. Cancer incidences showed a region-specific increase in age-stratified breast and ovarian cancer risk with standardized incidence ratios of 1.23 and 2.13, respectively. We, thus, report a Tyrolean BRCA1 founder mutation that correlates to a local increase in the breast and ovarian cancer risks. On the basis of its high prevalence, we suggest that targeted genetic analysis should be offered to all women with breast or ovarian cancer and ancestry from the LIV region.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Testes Genéticos , Neoplasias Ovarianas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína BRCA2/genética , Neoplasias da Mama/patologia , Códon de Terminação/genética , Feminino , Efeito Fundador , Humanos , Pessoa de Meia-Idade , Mutação , Neoplasias Ovarianas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA