Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 7464, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29749381

RESUMO

The ability of isolated neural stem cells (NSCs) to proliferate as neurospheres is indicative of their competence as stem cells, and depends critically on the polycomb group (PcG) member Bmi1: knockdown of Bmi1 results in defective proliferation and self-renewal of isolated NSCs, whereas overexpression of Bmi1 enhances these properties. Here we report genome-wide changes in gene expression in embryonic and adult NSCs (eNSCs and aNSCs) caused by overexpression of Bmi1. We find that genes whose expression is altered by perturbations in Bmi1 levels in NSCs are mostly distinct from those affected in other multipotent stem/progenitor cells, such as those from liver and lung, aside from a small core of common targets that is enriched for genes associated with cell migration and mobility. We also show that genes differing in expression between prospectively isolated quiescent and activated NSCs are not affected by Bmi1 overexpression. In contrast, a comparison of genes showing altered expression upon Bmi1 overexpression in eNSCs and in aNSCs reveals considerable overlap, in spite of their different provenances in the brain and their differing developmental programs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Neurais/metabolismo , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/genética , Regulação para Cima , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Células Cultivadas , Masculino , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Neurais/citologia
2.
PLoS Genet ; 14(2): e1007232, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29462141

RESUMO

The Ty1 retrotransposons present in the genome of Saccharomyces cerevisiae belong to the large class of mobile genetic elements that replicate via an RNA intermediary and constitute a significant portion of most eukaryotic genomes. The retromobility of Ty1 is regulated by numerous host factors, including several subunits of the Mediator transcriptional co-activator complex. In spite of its known function in the nucleus, previous studies have implicated Mediator in the regulation of post-translational steps in Ty1 retromobility. To resolve this paradox, we systematically examined the effects of deleting non-essential Mediator subunits on the frequency of Ty1 retromobility and levels of retromobility intermediates. Our findings reveal that loss of distinct Mediator subunits alters Ty1 retromobility positively or negatively over a >10,000-fold range by regulating the ratio of an internal transcript, Ty1i, to the genomic Ty1 transcript. Ty1i RNA encodes a dominant negative inhibitor of Ty1 retromobility that blocks virus-like particle maturation and cDNA synthesis. These results resolve the conundrum of Mediator exerting sweeping control of Ty1 retromobility with only minor effects on the levels of Ty1 genomic RNA and the capsid protein, Gag. Since the majority of characterized intrinsic and extrinsic regulators of Ty1 retromobility do not appear to effect genomic Ty1 RNA levels, Mediator could play a central role in integrating signals that influence Ty1i expression to modulate retromobility.


Assuntos
Complexo Mediador/fisiologia , Regiões Promotoras Genéticas/genética , Recombinação Genética/genética , Retroelementos/genética , Regulação da Expressão Gênica , Produtos do Gene gag/genética , Homeostase/genética , Mutagênese Insercional/genética , Organismos Geneticamente Modificados , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA