Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39195752

RESUMO

Epilepsy, a neurological disorder characterized by excessive neuronal activity and synchronized electrical discharges, ranks among the most prevalent global neurological conditions. Despite common use, antiepileptic drugs often result in adverse effects and lack effectiveness in controlling seizures in temporal lobe epilepsy (TLE) patients. Recent research explored the potential of occidentalin-1202, a peptide inspired by Polybia occidentalis venom, in safeguarding Wistar rats from chemically induced seizures. The present study evaluated the new analog from occidentalin-1202 named NOR-1202 using acute and chronic pilocarpine-induced models and an acute kainic acid (KA) male mice model. NOR-1202 was administered through the intracerebroventricular (i.c.v.), subcutaneous, or intraperitoneal routes, with stereotaxic procedures for the i.c.v. injection. In the acute pilocarpine-induced model, NOR-1202 (i.c.v.) protected against generalized seizures and mortality but lacked systemic antiepileptic activity. In the KA model, it did not prevent generalized seizures but improved survival. In the chronic TLE model, NOR-1202's ED50 did not differ significantly from the epileptic or healthy groups regarding time spent in spontaneous recurrent seizures during the five-day treatment. However, the NOR-1202 group exhibited more seizures than the healthy group on the second day of treatment. In summary, NOR-1202 exhibits antiepileptic effects against chemoconvulsant-induced seizures, but no effect was observed when administered systemically.


Assuntos
Anticonvulsivantes , Modelos Animais de Doenças , Convulsões , Animais , Masculino , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Camundongos , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Pilocarpina , Ácido Caínico/análogos & derivados , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/administração & dosagem , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/induzido quimicamente
2.
Neuropeptides ; 103: 102390, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984248

RESUMO

Venom-derived peptides are important sources for the development of new therapeutic molecules, especially due to their broad pharmacological activity. Previously, our research group identified a novel natural peptide, named fraternine, with promising effects for the treatment of Parkinson's disease. In the present paper, we synthesized three peptides bioinspired in fraternine: fra-10, fra-14, and fra-24. They were tested in the 6-OHDA-induced model of parkinsonism, quantifying motor coordination, levels of TH+ neurons in the substantia nigra pars compacta (SN), and inflammation mediators TNF-α, IL-6, and IL-1ß in the cortex. Peptides fra-14 and fra-10 improved the motor coordination in relation to 6-OHDA lesioned animals. However, most of the peptides were toxic in the doses applied. All three peptides reduced the intensity of the lesion induced rotations in the apomorphine test. Fra-24 higher dose increased the number of TH+ neurons in SN and reduced the concentration of TNF-α in the cortex of 6-OHDA lesioned mice. Overall, only the peptide fra-24 presented a neuroprotection effect on dopaminergic neurons of SN and a reduction of cytokine TNF-α levels, making it worthy of consideration for the treatment of PD.


Assuntos
Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Oxidopamina , Fator de Necrose Tumoral alfa , Substância Negra , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Neurônios Dopaminérgicos , Modelos Animais de Doenças
3.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446227

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive, relentless, and deadly disease. Little is known about its pathogenetic mechanisms; therefore, developing efficient pharmacological therapies is challenging. This work aimed to apply a therapeutic alternative using immunomodulatory peptides in a chronic pulmonary fibrosis murine model. BALB/c mice were intratracheally instilled with bleomycin (BLM) and followed for 30 days. The mice were treated with the immune modulatory peptides ToAP3 and ToAP4 every three days, starting on the 5th day post-BLM instillation. ELISA, qPCR, morphology, and respiratory function analyses were performed. The treatment with both peptides delayed the inflammatory process observed in the non-treated group, which showed a fibrotic process with alterations in the production of collagen I, III, and IV that were associated with significant alterations in their ventilatory mechanics. The ToAP3 and ToAP4 treatments, by lung gene modulation patterns, indicated that distinct mechanisms determine the action of peptides. Both peptides controlled the experimental IPF, maintaining the tissue characteristics and standard function properties and regulating fibrotic-associated cytokine production. Data obtained in this work show that the immune response regulation by ToAP3 and ToAP4 can control the alterations that cause the fibrotic process after BLM instillation, making both peptides potential therapeutic alternatives and/or adjuvants for IPF.


Assuntos
Fibrose Pulmonar Idiopática , Pulmão , Camundongos , Animais , Pulmão/patologia , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Bleomicina , Colágeno Tipo I , Camundongos Endogâmicos C57BL
4.
J Neurosci Res ; 100(11): 1969-1986, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35934922

RESUMO

Antiepileptic drugs have been successfully treating epilepsy and providing individuals sustained seizure freedom. However, about 30% of the patients with epilepsy present drug resistance, which means they are not responsive to the pharmacological treatment. Considering this, it becomes extremely relevant to pursue alternative therapeutic approaches, in order to provide appropriate treatment for those patients and also improve their quality of life. In the light of that, this review aims to discuss some innovative options for the treatment of epilepsy, which are currently under investigation, addressing strategies that go from therapeutic compounds to clinical procedures. For instance, peptides derived from animal venoms, such as wasps, spiders, and scorpions, demonstrate to be promising antiepileptic molecules, acting on a variety of targets. Other options are cannabinoids and compounds that modulate the endocannabinoid system, since it is now known that this network is involved in the pathophysiology of epilepsy. Furthermore, neurostimulation is another strategy, being an alternative clinical procedure for drug-resistant patients who are not eligible for palliative surgeries.


Assuntos
Canabinoides , Epilepsia , Animais , Anticonvulsivantes/uso terapêutico , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Endocanabinoides , Epilepsia/tratamento farmacológico , Peptídeos , Qualidade de Vida , Peçonhas/uso terapêutico
5.
Reprod Toxicol ; 106: 82-93, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695561

RESUMO

Over the past 70 years, the understanding of Autism Spectrum Disorder (ASD) improved greatly and is characterized as a heterogeneous neuropsychiatric syndrome. ASD is characterized by difficulties in social communication, restricted and repetitive behavior, interests, or activities. And it is often described as a combination of genetic predisposition and environmental factors. There are many treatments and approaches to ASD, including pharmacological therapies with antipsychotics, antidepressants, mood regulators, stimulants, and behavioral ones. However, no treatment is capable of reverting ASD. This review provides an overview of animal models of autism. We summarized genetic and environmental models and then valproic acid treatment as a useful model for ASD. As well as the main therapies and approaches used in the treatment, relating them to the neurochemical pathways altered in ASD, emphasizing the pharmacological potential of peptides and bioinspired compounds found in animal venoms as a possible future treatment for ASD.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/etiologia , Animais , Antipsicóticos/uso terapêutico , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Humanos , Camundongos , Ocitocina/uso terapêutico , Peptídeos/uso terapêutico , Ácido Valproico/efeitos adversos
6.
Toxicon ; 194: 23-36, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33610635

RESUMO

Epilepsy is one of the most common neurological diseases in the world. The objective of this research was to investigate a new peptide from the venom of the social wasp Chartergellus communis useful to the study or pharmacotherapy of epilepsy. The wasps were collected, and their venom was extracted. Afterward, the steps of fractionation, sequencing, and identification were carried out to obtain four peptides. These molecules were synthesized for behavioral evaluation tests and electroencephalographic assays to determine their antiseizure potential (induction of acute seizures using the chemical compounds, pentylenetetrazole - PTZ, and pilocarpine - PILO) and analysis of neuropharmacological profile (general spontaneous activity and alteration in motor coordination). Chartergellus-CP1 (i.c.v. - 3.0 µg/animal) caused beneficial alterations in some of the parameters evaluated in both models: PTZ (latency and duration of maximum seizures) and PILO (latency and duration of, and protection against, maximum seizures, and reduction of the median of the seizure scores. When evaluated in 3 doses in the seizure model induced by PILO, the dose of 3.0 µg/animal protected the animals against seizures, with an estimated ED50 of 1.49 µg/animal. Electroencephalographic evaluation of Chartergellus-CP1 showed an improvement in latency, quantity, and percentage of protection against generalized electroencephalographic seizures in the PILO model. Further, Chartergellus-CP1 did not cause adverse effects on general spontaneous activity and motor coordination of animals. This study demonstrated how compounds isolated from wasps' venom may be important resources in the search for new drugs. Such compounds can be considered valuable therapeutic and biotechnological tools for the study and future treatment of epileptic disorders. In this context, a peptide that is potentially useful for epilepsy pharmacotherapy was identified in the venom of C. communis.


Assuntos
Anticonvulsivantes/farmacologia , Venenos de Vespas/farmacologia , Vespas , Animais , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Pentilenotetrazol/uso terapêutico , Pentilenotetrazol/toxicidade , Peptídeos , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
7.
Toxins (Basel) ; 12(9)2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867207

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative condition that affects the Central Nervous System (CNS). Insect venoms show high molecular variability and selectivity in the CNS of mammals and present potential for the development of new drugs for the treatment of PD. In this study, we isolated and identified a component of the venom of the social wasp Parachartergus fraternus and evaluated its neuroprotective activity in the murine model of PD. For this purpose, the venom was filtered and separated through HPLC; fractions were analyzed through mass spectrometry and the active fraction was identified as a novel peptide, called Fraternine. We performed two behavioral tests to evaluate motor discoordination, as well as an apomorphine-induced rotation test. We also conducted an immunohistochemical assay to assess protection in TH+ neurons in the Substantia Nigra (SN) region. Group treated with 10 µg/animal of Fraternine remained longer in the rotarod compared to the lesioned group. In the apomorphine test, Fraternine decreased the number of rotations between treatments. This dose also inhibited dopaminergic neuronal loss, as indicated by immunohistochemical analysis. This study identified a novel peptide able to prevent the death of dopaminergic neurons of the SN and recover motor deficit in a 6-OHDA-induced murine model of PD.


Assuntos
Comportamento Animal/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Peptídeos/farmacologia , Substância Negra/efeitos dos fármacos , Venenos de Vespas/química , Animais , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Masculino , Camundongos , Degeneração Neural , Fármacos Neuroprotetores/isolamento & purificação , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Peptídeos/isolamento & purificação , Teste de Desempenho do Rota-Rod , Substância Negra/metabolismo , Substância Negra/fisiopatologia , Vespas
8.
Neurochem Int ; 136: 104714, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32165170

RESUMO

Neuroinflammation is an important factor contributing to cognitive impairment and neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), ischemic injury, and multiple sclerosis (MS). These diseases are characterized by inexorable progressive injury of neuron cells, and loss of motor or cognitive functions. Microglia, which are the resident macrophages in the brain, play an important role in both physiological and pathological conditions. In this review, we provide an updated discussion on the role of ROS and metabolic disease in the pathological mechanisms of activation of the microglial cells and release of cytotoxins, leading to the neurodegenerative process. In addition, we also discuss in vivo models, such as zebrafish and Caenorhabditis elegans, and provide new insights into therapeutics bioinspired by neuropeptides from venomous animals, supporting high throughput drug screening in the near future, searching for a complementary approach to elucidating crucial mechanisms associated with neurodegenerative disorders.


Assuntos
Encéfalo/metabolismo , Doenças Metabólicas/metabolismo , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Humanos , Macrófagos/metabolismo , Neurônios/metabolismo
9.
Alcohol ; 84: 67-75, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31698029

RESUMO

Ayahuasca is a hallucinogenic infusion used in religious rituals that has serotoninergic properties and may be a potential therapeutic option for drug addiction. In this study, Wistar rats had intermittent access to ethanol for 8 weeks, receiving water (control), naltrexone (NTX, 2 mg/kg body weight [bw] intraperitoneally [i.p.]) or ayahuasca (Aya) at 0.5x, 1x, or 2x the ritual dose in the final 5 days. A naïve group had access only to water. Ethanol intake was estimated throughout the experiment, and cFos expression was evaluated in medial orbital cortex (MO), ventral orbital cortex (VO), lateral orbital cortex (LO), nucleus accumbens (NAc), and striatum. Treatment with either NTX or Aya (oral) did not decrease ethanol intake compared to the baseline level (5th to 7th week), but the NTX group intake was significantly lower than controls (p < 0.05). Ethanol significantly increased cFos expression in the MO region for control (p < 0.0001), NTX (p < 0.05), Aya1 (p < 0.001), and Aya2 (p < 0.0001) groups. This increase was also observed in the VO for the Aya1 group (p = 0.035), in the LO for the Aya2 group (p < 0.01), and in NAc for NTX and ayahuasca groups (p < 0.005). Furthermore, NTX and Aya0.5 treatment decreased cFos expression compared to controls in the MO region (p < 0.05 and p < 0.01, respectively), but only the ayahuasca group reached levels not significantly different from the naïve group. Studies using other protocols and dose regime are necessary to better investigate the impact of ayahuasca on alcohol intake by rats to support the observations in humans. Additionally, the role of ayahuasca in mediating cFos expression in other selected brain regions and its relationship with the serotoninergic/dopaminergic systems and drug addiction need further investigation.


Assuntos
Banisteriopsis , Encéfalo/efeitos dos fármacos , Etanol/administração & dosagem , Alucinógenos/farmacologia , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Consumo de Bebidas Alcoólicas , Animais , Corpo Estriado/efeitos dos fármacos , Masculino , Modelos Animais , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar , Água/administração & dosagem
10.
Biomed Pharmacother ; 118: 109152, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31376652

RESUMO

Antimicrobial peptides (AMPs) are small molecules with microbicidal and immunoregulatory activities. In this study we evaluated the anti-inflammatory and antimicrobial activities of peptides ToAP3 and ToAP4, AMPs from the venom of the Brazilian scorpion Tityus obscurus. To test the peptides' activity, murine bone marrow-derived macrophages (BMDMs) or dendritic cells (BMDCs) were stimulated with peptides plus LPS to analyze their ability to modulate cytokine release as well as phenotypic markers. For antimicrobial analysis, we evaluated the indirect activity against macrophage-internalized Cryptococcus neoformans and direct activity against Mycobacterium massiliense. Our data demonstrate that they were able to reduce TNF-α and IL-1ß transcript levels and protein levels for BMDM and BMDC. Furthermore, the reduction of TNF-α secretion, before LPS- inflammatory stimuli, is associated with peptide interaction with TLR-4. ToAP4 increased MHC-II expression in BMDC, while ToAP3 decreased co-stimulatory molecules such as CD80 and CD86. Although these peptides were able to modulate the production of cytokines and molecules associated with antigen presentation, they did not increase the ability of clearance of C. neoformans by macrophages. In antimicrobial analysis, only ToAP3 showed potent action against bacteria. Altogether, these results demonstrate a promising target for the development of new immunomodulatory and anti-bacterial therapies.


Assuntos
Anti-Infecciosos/farmacologia , Citocinas/metabolismo , Peptídeos/farmacologia , Venenos de Escorpião/química , Escorpiões , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Anti-Infecciosos/isolamento & purificação , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular , Cryptococcus neoformans/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Imunidade Inata/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Testes de Sensibilidade Microbiana , Mycobacterium abscessus/efeitos dos fármacos , Peptídeos/isolamento & purificação , Receptor 4 Toll-Like/genética
11.
Pharmacol Ther ; 188: 176-185, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29605457

RESUMO

The complex process of pain control commonly involves the use of systemic analgesics; however, in many cases, a more potent and effective polypharmacological approach is needed to promote clinically significant improvement. Additionally, considering side effects caused by current painkillers, drug discovery is once more turning to nature as a source of more efficient therapeutic alternatives. In this context, arthropod venoms contain a vast array of bioactive substances that have evolved to selectively bind to specific pharmacological targets involved in the pain signaling pathway, playing an important role as pain activators or modulators, the latter serving as promising analgesic agents. The current review explores how the pain pathway works and surveys neuroactive compounds obtained from arthropods' toxins, which function as pain modulators through their interaction with specific ion channels and membrane receptors, emerging as promising candidates for drug design and development.


Assuntos
Analgésicos/farmacologia , Venenos de Artrópodes/farmacologia , Animais , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/fisiologia , Humanos , Dor/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/fisiologia , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/fisiologia
12.
Peptides ; 95: 84-93, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28754346

RESUMO

Chatergellus communis is a wasp species endemic to the neotropical region and its venom constituents have never been described. In this study, two peptides from C. communis venom, denominated Communis and Communis-AAAA, were chemically and biologically characterized. In respect to the chemical characterization, the following amino acid sequences and molecular masses were identified: Communis: Ile-Asn-Trp-Lys-Ala-Ile-Leu-Gly-Lys-Ile-Gly-Lys-COOH (1340.9Da) Communis-AAAA: Ile-Asn-Trp-Lys-Ala-Ile-Leu-Gly-Lys-Ile-Gly-Lys-Ala-Ala-Ala-Ala-Val-Xle-NH2 (1836.3Da). Furthermore, their biological effects were compared, accounting for the differences in structural characteristics between the two peptides. To this end, three biological assays were performed in order to evaluate the hyperalgesic, edematogenic and hemolytic effects of these molecules. Communis-AAAA, unlike Communis, showed a potent hemolytic activity with EC50=142.6µM. Moreover, the highest dose of Communis-AAAA (2nmol/animal) induced hyperalgesia in mice. On the other hand, Communis (10nmol/animal) was able to induce edema but did not present hemolytic or hyperalgesic activity. Although both peptides have similarities in linear structures, we demonstrated the distinct biological effects of Communis and Communis-AAAA. This is the first study with Chartegellus communis venom, and both Communis and Communis-AAAA are unpublished peptides.


Assuntos
Alanina/química , Hemólise/efeitos dos fármacos , Peptídeos/farmacologia , Venenos de Vespas/farmacologia , Sequência de Aminoácidos/genética , Animais , Humanos , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Peptídeos/química , Peptídeos/genética , Tripsina/química , Venenos de Vespas/química , Venenos de Vespas/genética , Vespas/química , Vespas/genética
13.
Virulence ; 8(1): 41-52, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27294852

RESUMO

The commensal fungal pathogen Candida albicans is a leading cause of lethal systemic infections in immunocompromised patients. One of the main mechanisms of host immune evasion and virulence by this pathogen is the switch from yeast form to hyphal growth morphologies. Micro RNAs (miRNAs), a small regulatory non-coding RNA, has been identified as an important part of the immune response to a wide variety of pathogens. In general, miRNAs act by modulating the intensity of inflammatory responses. miRNAs act by base-paring binding to specific sequences of target mRNAs, generally causing their silencing through mRNA degradation or translational repression. To study the impact of C. albicans cell morphology upon host miRNA expression, we investigated the differential modulation of 9 different immune response-related miRNAs in primary murine bone marrow-derived macrophages (BMDMs) exposed to either yeasts or hyphal forms of Candida albicans. Here, we show that the different growth morphologies induce distinct miRNA expression patterns in BMDMs. Interestingly, our data suggest that the C-Type lectin receptor Dectin-1 is a major PRR that orchestrates miR155 upregulation in a Syk-dependent manner. Our results suggest that PRR-mediating signaling events are key drivers of miRNA-mediated gene regulation during fungal pathogenesis.


Assuntos
Candida albicans/citologia , Candida albicans/patogenicidade , Lectinas Tipo C/metabolismo , Macrófagos/microbiologia , MicroRNAs/genética , Animais , Candida albicans/crescimento & desenvolvimento , Candida albicans/imunologia , Regulação Fúngica da Expressão Gênica , Hifas/imunologia , Hifas/patogenicidade , Hifas/fisiologia , Evasão da Resposta Imune , Lectinas Tipo C/genética , Macrófagos/imunologia , Camundongos , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Quinase Syk/metabolismo , Ativação Transcricional , Regulação para Cima
14.
PLoS One ; 11(3): e0149729, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930596

RESUMO

Mycobacterium abscessus subsp. massiliense, a rapidly growing mycobacteria (RGM) that is becoming increasingly important among human infectious diseases, is virulent and pathogenic and presents intrinsic resistance to several antimicrobial drugs that might hamper their elimination. Therefore, the identification of new drugs to improve the current treatment or lower the risk of inducing resistance is urgently needed. Wasp venom primarily comprises peptides that are responsible for most of the biological activities in this poison. Here, a novel peptide Polydim-I, from Polybia dimorpha Neotropical wasp, was explored as an antimycobacterial agent. Polydim-I provoked cell wall disruption and exhibited non-cytotoxicity towards mammalian cells. Polydim-I treatment of macrophages infected with different M. abscessus subsp. massiliense strains reduced 40 to 50% of the bacterial load. Additionally, the Polydim-I treatment of highly susceptible mice intravenously infected with M. abscessus subsp. massiliense induced 0.8 to 1 log reduction of the bacterial load in the lungs, spleen, and liver. In conclusion, this is the first study to show the therapeutic potential of a peptide derived from wasp venom in treating mycobacteria infections. Polydim-I acts on the M. abscessus subsp. massiliense cell wall and reduce 40-90% of the bacterial load both in vitro and in vivo. The presented results encourage further studies on the use of Polydim-I as one of the components for M. abscessus subsp. massiliense treatment.


Assuntos
Antibacterianos/farmacologia , Infecções por Mycobacterium/tratamento farmacológico , Mycobacterium/efeitos dos fármacos , Peptídeos/farmacologia , Vespas/metabolismo , Sequência de Aminoácidos , Animais , Antibacterianos/química , Linhagem Celular , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Proteínas de Insetos/química , Proteínas de Insetos/farmacologia , Interferon gama/deficiência , Interferon gama/genética , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos Endogâmicos BALB C , Camundongos Knockout , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Mycobacterium/fisiologia , Mycobacterium/ultraestrutura , Infecções por Mycobacterium/genética , Infecções por Mycobacterium/microbiologia , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Venenos de Vespas/metabolismo
15.
Pharmacogn Mag ; 11(43): 579-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26246735

RESUMO

BACKGROUND: Parawixia bistriata is a semi-colonial spider found mainly in southeastern of Brazil. Parawixin 10 (Pwx 10) a compound isolated from this spider venom has been demonstrated to act as neuroprotective in models of injury regulating the glutamatergic neurotransmission through glutamate transporters. OBJECTIVES: The aim of this work was to evaluate the neuroprotective effect of Pwx 10 in a rat model of excitotoxic brain injury by N-methyl-D-aspartate (NMDA) injection. MATERIAL AND METHODS: Male Wistar rats have been used, submitted to stereotaxic surgery for saline or NMDA microinjection into dorsal hippocampus. Two groups of animals were treated with Pwx 10. These treated groups received a daily injection of the Pwx 10 (2.5 mg/µL) in the right lateral ventricle into rats pretreated with NMDA, always at the same time, each one starting the treatment 1 h or 24 h. Nissl staining was performed for evaluating the extension and efficacy of the NMDA injury and the neuroprotective effect of Pwx 10. RESULTS: The treatment with Pwx 10 showed neuroprotective effect, being most pronounced when the compound was administrated from 1 h after NMDA in all hippocampal subfields analyzed (CA1, CA3 and hilus). CONCLUSION: These results indicated that Pwx 10 may be a good template to develop therapeutic drugs for treating neurodegenerative diseases, reinforcing the importance of continuing studies on its effects in the central nervous system.

16.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954768

RESUMO

The impact of neurological disorders in society is growing with alarming estimations for an incidence increase in the next decades. These disorders are generally chronic and can affect individuals early during productive life, imposing real limitations on the performance of their social roles. Patients can have their independence, autonomy, freedom, self-image, and self-confidence affected. In spite of their availability, drugs for the treatment of these disorders are commonly associated with side effects, which can vary in frequency and severity. Currently, no effective cure is known. Nowadays, the biopharmaceutical research community widely recognizes arthropod venoms as a rich source of bioactive compounds, providing a plethora of possibilities for the discovery of new neuroactive compounds, opening up novel and attractive opportunities in this field. Several identified molecules with a neuropharmacological profile can act in the central nervous system on different neuronal targets, rendering them useful tools for the study of neurological disorders. In this context, this review aims to describe the current main compounds extracted from arthropod venoms for the treatment of five major existing neurological disorders: stroke, Alzheimer's disease, epilepsy, Parkinson's disease, and pathological anxiety.(AU)


Assuntos
Animais , Venenos de Artrópodes , Produtos Biológicos , Sistema Nervoso Central , Doenças do Sistema Nervoso
17.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484613

RESUMO

The impact of neurological disorders in society is growing with alarming estimations for an incidence increase in the next decades. These disorders are generally chronic and can affect individuals early during productive life, imposing real limitations on the performance of their social roles. Patients can have their independence, autonomy, freedom, self-image, and self-confidence affected. In spite of their availability, drugs for the treatment of these disorders are commonly associated with side effects, which can vary in frequency and severity. Currently, no effective cure is known. Nowadays, the biopharmaceutical research community widely recognizes arthropod venoms as a rich source of bioactive compounds, providing a plethora of possibilities for the discovery of new neuroactive compounds, opening up novel and attractive opportunities in this field. Several identified molecules with a neuropharmacological profile can act in the central nervous system on different neuronal targets, rendering them useful tools for the study of neurological disorders. In this context, this review aims to describe the current main compounds extracted from arthropod venoms for the treatment of five major existing neurological disorders: stroke, Alzheimers disease, epilepsy, Parkinsons disease, and pathological anxiety.


Assuntos
Animais , Animais Peçonhentos , Doenças do Sistema Nervoso/terapia , Venenos de Artrópodes/uso terapêutico
18.
Pharmacol Ther ; 114(2): 171-83, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17399793

RESUMO

Invertebrate venoms have attracted considerable interest as a potential source of bioactive substances, especially neurotoxins. These molecules have proved to be extremely useful tools for the understanding of synaptic transmission events, and they have contributed to the design of novel drugs for the treatment of neurological disorders and pain. In this context, as epilepsy involves neuronal substrates, which are sites of action of many neurotoxins; venoms may be particularly useful for antiepileptic drug (AED) research. Epilepsy is a chronic disease whose treatment consists of controlling seizures with antiepileptics that very often induce strong undesirable side effects that may limit treatment. Here, we review the vast, but yet unexplored, world of neurotoxins from invertebrates used as probes in pharmacological screening for novel and less toxic antiepileptics. We briefly review (1) the molecular basis of epilepsy, as well as the sites of action of commonly used anticonvulsants (we bring a comprehensive review of the elements from invertebrate venoms which are mostly studied in neuroscience research and may be useful for drug development); (2) peptides from conus snails; (3) peptides and polyamine toxins from spiders and wasps; and (4) peptides from scorpions.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Neurotoxinas/uso terapêutico , Peçonhas/uso terapêutico , Animais , Anticonvulsivantes/farmacologia , Desenho de Fármacos , Epilepsia/fisiopatologia , Humanos , Invertebrados , Neurotoxinas/farmacologia , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Poliaminas/farmacologia , Poliaminas/uso terapêutico , Peçonhas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA