Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 12(7): e16010, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38610066

RESUMO

Aldosterone has been suggested to be involved in the microvascular complications observed in type 2 diabetes. We aimed to investigate the effect of mineralocorticoid receptor (MR) blockade on endothelial function in individuals with type 2 diabetes compared to healthy controls. We included 12 participants with type 2 diabetes and 14 controls. We measured leg hemodynamics at baseline and during femoral arterial infusion of acetylcholine and sodium nitroprusside before and 8 weeks into treatment with MR blockade (eplerenone). Acetylcholine infusion was repeated with concomitant n-acetylcysteine (antioxidant) infusion. No difference in leg blood flow or vascular conductance was detected before or after the treatment with MR blockade in both groups and there was no difference between groups. Infusion of n-acetylcysteine increased baseline blood flow and vascular conductance, but did not change the vascular response to acetylcholine before or after treatment with MR blockade. Skeletal muscle eNOS content was unaltered by MR blockade and no difference between groups was detected. In conclusion, we found no effect of MR blockade endothelial function in individuals with and without type 2 diabetes. As the individuals with type 2 diabetes did not have vascular dysfunction, these results might not apply to individuals with vascular dysfunction.


Assuntos
Diabetes Mellitus Tipo 2 , Receptores de Mineralocorticoides , Humanos , Acetilcolina/administração & dosagem , Acetilcolina/farmacologia , Acetilcolina/uso terapêutico , Acetilcisteína , Aldosterona , Diabetes Mellitus Tipo 2/tratamento farmacológico
2.
Exp Physiol ; 109(5): 779-790, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38445814

RESUMO

Endothelial dysfunction develops with age and may precede cardiovascular disease. Animal data suggest that T-type calcium channels play an important role in endothelial function, but data from humans are lacking. This study included 15 healthy, sedentary, elderly males for a double blinded, randomized controlled trial. For 8 weeks, they were given 40 mg/day of either efonidipine (L- and T-type calcium channel blocker (CCB)) or nifedipine (L-type CCB). Vascular function was evaluated by graded femoral arterial infusions of acetylcholine (ACh; endothelium-dependent vasodilator) and sodium nitroprusside (endothelium-independent vasodilator) both with and without co-infusion of N-acetylcysteine (NAC; antioxidant). We measured leg blood flow and mean arterial pressure and calculated leg vascular conductance to evaluate the leg vascular responses. Despite no significant change in blood pressure in either group, we observed higher leg blood flow responses (Δ 0.43 ± 0.45 l/min, P = 0.006) and leg vascular conductance (Δ 5.38 ± 5.67 ml/min/mmHg, P = 0.005) to intra-arterial ACh after efonidipine, whereas there was no change in the nifedipine group, and no differences between groups. We found no upregulation of endothelial nitric oxide synthase in vastus lateralis muscle biopsies within or between groups. Smooth muscle cell responsiveness was unaltered by efonidipine or nifedipine. Intravenous co-infusion of NAC did not affect endothelium-dependent vasodilatation in either of the CCB groups. These results suggest that 8 weeks' inhibition of T- and L-type calcium channels augments endothelium-dependent vasodilatory function in healthy elderly males. Further studies are required to elucidate if T-type calcium channel inhibition can counteract endothelial dysfunction.


Assuntos
Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo T , Endotélio Vascular , Nifedipino , Nitrofenóis , Humanos , Masculino , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/efeitos dos fármacos , Idoso , Bloqueadores dos Canais de Cálcio/farmacologia , Nifedipino/farmacologia , Projetos Piloto , Método Duplo-Cego , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Di-Hidropiridinas/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Vasodilatadores/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Compostos Organofosforados/farmacologia , Acetilcolina/farmacologia , Perna (Membro)/irrigação sanguínea , Nitroprussiato/farmacologia , Pessoa de Meia-Idade
3.
J Clin Endocrinol Metab ; 106(3): e1262-e1270, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33247722

RESUMO

CONTEXT: Individuals with type 2 diabetes have an increased risk of endothelial dysfunction and cardiovascular disease. Plasma aldosterone could contribute by reactive oxygen species-dependent mechanisms by inducing a shift in the balance between a vasoconstrictor and vasodilator response to aldosterone. OBJECTIVE: We aimed to investigate the acute vascular effects of aldosterone in individuals with type 2 diabetes compared with healthy controls and if infusion of an antioxidant (n-acetylcysteine [NAC]) would alter the vascular response. METHODS: In a case-control design, 12 participants with type 2 diabetes and 14 healthy controls, recruited from the general community, were studied. Leg hemodynamics were measured before and during aldosterone infusion (0.2 and 5 ng min-1 [L leg volume]-1) for 10 minutes into the femoral artery with and without coinfusion of NAC (125 mg kg-1 hour-1 followed by 25 mg kg-1 hour-1). Leg blood flow and arterial blood pressure was measured, and femoral arterial and venous blood samples were collected. RESULTS: Compared with the control group, leg blood flow and vascular conductance decreased during infusion of aldosterone at the high dose in individuals with type 2 diabetes, whereas coinfusion of NAC attenuated this response. Plasma aldosterone increased in both groups during aldosterone infusion and there was no difference between groups at baseline or during the infusions. CONCLUSION: These results suggests that type 2 diabetes is associated with a vasoconstrictor response to physiological levels of infused aldosterone and that the antioxidant NAC diminishes this response.


Assuntos
Acetilcisteína/farmacologia , Aldosterona/farmacologia , Diabetes Mellitus Tipo 2/fisiopatologia , Vasoconstrição/efeitos dos fármacos , Acetilcisteína/administração & dosagem , Adulto , Aldosterona/administração & dosagem , Aldosterona/sangue , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Estudos de Casos e Controles , Dinamarca , Diabetes Mellitus Tipo 2/sangue , Feminino , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Humanos , Perna (Membro)/irrigação sanguínea , Masculino , Pessoa de Meia-Idade , Fluxo Sanguíneo Regional/efeitos dos fármacos
4.
Diabetologia ; 62(3): 485-493, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30607464

RESUMO

AIMS/HYPOTHESIS: Plasma ATP is a potent vasodilator and is thought to play a role in the local regulation of blood flow. Type 2 diabetes is associated with reduced tissue perfusion. We aimed to examine whether individuals with type 2 diabetes have reduced plasma ATP concentrations compared with healthy control participants (case-control design). METHODS: We measured femoral arterial and venous plasma ATP levels with the intravascular microdialysis technique during normoxia, hypoxia and one-legged knee-extensor exercise (10 W and 30 W) in nine participants with type 2 diabetes and eight control participants. In addition, we infused acetylcholine (ACh), sodium nitroprusside (SNP) and ATP into the femoral artery to assess vascular function and ATP signalling. RESULTS: Individuals with type 2 diabetes had a lower leg blood flow (LBF; 2.9 ± 0.1 l/min) compared with the control participants (3.2 ± 0.1 l/min) during exercise (p < 0.05), in parallel with lower venous plasma ATP concentration (205 ± 35 vs 431 ± 72 nmol/l; p < 0.05). During systemic hypoxia, LBF increased from 0.35 ± 0.04 to 0.54 ± 0.06 l/min in control individuals, whereas it did not increase (0.25 ± 0.04 vs 0.31 ± 0.03 l/min) in the those with type 2 diabetes and was lower than in the control individuals (p < 0.05). Hypoxia increased venous plasma ATP levels in both groups (p < 0.05), but the increase was higher in control individuals (90 ± 26 nmol/l) compared to those with type 2 diabetes (18 ± 5 nmol/l). LBF and vascular conductance were lower during ATP (0.15 and 0.4 µmol min-1 [kg leg mass]-1) and ACh (100 µg min-1 [kg leg mass]-1) infusion in individuals with type 2 diabetes compared with the control participants (p < 0.05), whereas there was no difference during SNP infusion. CONCLUSIONS/INTERPRETATION: These findings demonstrate that individuals with type 2 diabetes have lower plasma ATP concentrations during exercise and hypoxia compared with control individuals, and this occurs in parallel with lower blood flow. Moreover, individuals with type 2 diabetes have a reduced vasodilatory response to infused ATP. These impairments in the ATP system are both likely to contribute to the reduced tissue perfusion associated with type 2 diabetes. TRIAL REGISTRATION: ClinicalTrials.gov NCT02001766.


Assuntos
Trifosfato de Adenosina/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Exercício Físico/fisiologia , Hipóxia/fisiopatologia , Músculo Esquelético/fisiopatologia , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Hipóxia/metabolismo , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Fluxo Sanguíneo Regional/fisiologia , Vasodilatação/fisiologia
5.
Am J Physiol Heart Circ Physiol ; 314(3): H616-H626, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167117

RESUMO

Breathlessness during daily activities is the primary symptom in patients with heart failure (HF). Poor correlation between the hemodynamic parameters of left ventricular performance and perceived symptoms suggests that other factors, such as skeletal muscle function, play a role in determining exercise capacity. We investigated the effect of 6 wk of high-intensity, one-legged cycling (HIC; 8 × 4 at 90% one-legged cycling max) on 1) the ability to override sympathetic vasoconstriction (arterial infusion of tyramine) during one-legged knee-extensor exercise (KEE), 2) vascular function (arterial infusion of ACh, sodium nitroprusside, tyramine, and ATP), and 3) exercise capacity in HF patients with reduced ejection fraction ( n = 8) compared with healthy individuals ( n = 6). Arterial tyramine infusion lowered leg blood flow and leg vascular conductance at rest and during KEE before the training intervention in both groups ( P < 0.05) but not during KEE after the training intervention. There was no difference between groups. The peak vasodilatory response to ATP was blunted in HF patients ( P < 0.05), whereas there was no difference in ACh- and sodium nitroprusside-induced vasodilation between HF patients and healthy individuals. ACh-induced vasodilation increased in HF patients after the training intervention ( P < 0.05). HIC improved aerobic capacity in both groups ( P < 0.05), whereas only HF patients made improvements in the 6-min walking distance ( P < 0.05). These results suggest that exercise hyperemia and functional sympatholysis are not altered in HF patients and that functional sympatholysis is improved with HIC in both HF patients and healthy individuals. Moreover, these results suggest that the peak vasodilatory response to ATP is blunted in HF. NEW & NOTEWORTHY The ability to override sympathetic vasoconstrictor activity (by arterial tyramine infusion) during exercise is not different between heart failure patients and healthy individuals and is improved by high-intensity, one-legged cycling training. The peak vasodilatory response to ATP is reduced in heart failure patients.


Assuntos
Trifosfato de Adenosina/administração & dosagem , Ciclismo , Terapia por Exercício/métodos , Tolerância ao Exercício/efeitos dos fármacos , Insuficiência Cardíaca/terapia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/inervação , Sistema Nervoso Simpático/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/administração & dosagem , Idoso , Dinamarca , Feminino , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Humanos , Hiperemia/fisiopatologia , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Contração Muscular , Fluxo Sanguíneo Regional , Volume Sistólico , Sistema Nervoso Simpático/fisiopatologia , Simpatomiméticos/administração & dosagem , Fatores de Tempo , Resultado do Tratamento , Função Ventricular Esquerda
6.
Am J Physiol Heart Circ Physiol ; 309(11): H1867-75, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26432842

RESUMO

Aging is associated with an altered regulation of blood flow to contracting skeletal muscle; however, the precise mechanisms remain unclear. We recently demonstrated that inhibition of cGMP-binding phosphodiesterase 5 (PDE5) increased blood flow to contracting skeletal muscle of older but not young human subjects. Here we examined whether this effect of PDE5 inhibition was related to an improved ability to blunt α-adrenergic vasoconstriction (functional sympatholysis) and/or improved efficacy of local vasodilator pathways. A group of young (23 ± 1 yr) and a group of older (72 ± 1 yr) male subjects performed knee-extensor exercise in a control setting and following intake of the highly selective PDE5 inhibitor sildenafil. During both conditions, exercise was performed without and with arterial tyramine infusion to evoke endogenous norepinephrine release and consequently stimulation of α1- and α2-adrenergic receptors. The level of the sympatholytic compound ATP was measured in venous plasma by use of the microdialysis technique. Sildenafil increased (P < 0.05) vascular conductance during exercise in the older group, but tyramine infusion reduced (P < 0.05) this effect by 38 ± 9%. Similarly, tyramine reduced (P < 0.05) the vasodilation induced by arterial infusion of a nitric oxide (NO) donor by 54 ± 9% in the older group, and this effect was not altered by sildenafil. Venous plasma [ATP] did not change with PDE5 inhibition in the older subjects during exercise. Collectively, PDE5 inhibition in older humans was not associated with an improved ability for functional sympatholysis. An improved efficacy of the NO system may be one mechanism underlying the effect of PDE5 inhibition on exercise hyperemia in aging.


Assuntos
Envelhecimento/metabolismo , Vasos Sanguíneos/efeitos dos fármacos , Contração Muscular , Músculo Esquelético/irrigação sanguínea , Inibidores da Fosfodiesterase 5/administração & dosagem , Citrato de Sildenafila/administração & dosagem , Sistema Nervoso Simpático/efeitos dos fármacos , Simpatomiméticos/administração & dosagem , Tiramina/administração & dosagem , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Trifosfato de Adenosina/sangue , Fatores Etários , Idoso , Velocidade do Fluxo Sanguíneo , Vasos Sanguíneos/inervação , Vasos Sanguíneos/metabolismo , Humanos , Hiperemia/metabolismo , Hiperemia/fisiopatologia , Infusões Intra-Arteriais , Masculino , Microdiálise , Músculo Esquelético/metabolismo , Doadores de Óxido Nítrico/administração & dosagem , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Fluxo Sanguíneo Regional , Sistema Nervoso Simpático/metabolismo , Adulto Jovem
7.
Exp Physiol ; 100(10): 1118-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26268717

RESUMO

NEW FINDINGS: What is the central question of this study? Temperature-sensitive mechanisms are thought to contribute to blood-flow regulation, but the relationship between exercising and non-exercising limb perfusion and blood temperature is not established. What is the main finding and its importance? The close coupling among perfusion, blood temperature and aerobic metabolism in exercising and non-exercising extremities across different exercise modalities and activity levels and the tight association between limb vasodilatation and increases in plasma ATP suggest that both temperature- and metabolism-sensitive mechanisms are important for the control of human limb perfusion, possibly by activating ATP release from the erythrocytes. Temperature-sensitive mechanisms may contribute to blood-flow regulation, but the influence of temperature on perfusion to exercising and non-exercising human limbs is not established. Blood temperature (TB ), blood flow and oxygen uptake (V̇O2) in the legs and arms were measured in 16 healthy humans during 90 min of leg and arm exercise and during exhaustive incremental leg or arm exercise. During prolonged exercise, leg blood flow (LBF) was fourfold higher than arm blood flow (ABF) in association with higher TB and limb V̇O2. Leg and arm vascular conductance during exercise compared with rest was related closely to TB (r(2) = 0.91; P < 0.05), plasma ATP (r(2) = 0.94; P < 0.05) and limb V̇O2 (r(2) = 0.99; P < 0.05). During incremental leg exercise, LBF increased in association with elevations in TB and limb V̇O2, whereas ABF, arm TB and V̇O2 remained largely unchanged. During incremental arm exercise, both ABF and LBF increased in relationship to similar increases in V̇O2. In 12 trained males, increases in femoral TB and LBF during incremental leg exercise were mirrored by similar pulmonary artery TB and cardiac output dynamics, suggesting that processes in active limbs dominate central temperature and perfusion responses. The present data reveal a close coupling among perfusion, TB and aerobic metabolism in exercising and non-exercising extremities and a tight association between limb vasodilatation and increases in plasma ATP. These findings suggest that temperature and V̇O2 contribute to the regulation of limb perfusion through control of intravascular ATP.


Assuntos
Regulação da Temperatura Corporal , Exercício Físico/fisiologia , Hemodinâmica , Contração Muscular , Músculo Esquelético/irrigação sanguínea , Trifosfato de Adenosina/sangue , Adulto , Biomarcadores/sangue , Velocidade do Fluxo Sanguíneo , Débito Cardíaco , Metabolismo Energético , Feminino , Veia Femoral/fisiologia , Humanos , Extremidade Inferior , Masculino , Modelos Cardiovasculares , Músculo Esquelético/metabolismo , Artéria Pulmonar/fisiologia , Fluxo Sanguíneo Regional , Transdução de Sinais , Veia Subclávia/fisiologia , Fatores de Tempo , Extremidade Superior
8.
Am J Physiol Endocrinol Metab ; 308(5): E426-33, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25564476

RESUMO

The objective of this study was to assess the insulin-independent effects of incretin hormones on glucose and glycerol metabolism and hemodynamics under euglycemic and hyperglycemic conditions. Young, healthy men (n=10) underwent three trials in a randomized, controlled, crossover study. Each trial consisted of a two-stage (euglycemia and hyperglycemia) pancreatic clamp (using somatostatin to prevent endogenous insulin secretion). Glucose and lipid metabolism was measured via infusion of stable glucose and glycerol isotopic tracers. Hemodynamic variables (femoral, brachial, and common carotid artery blood flow and flow-mediated dilation of the brachial artery) were also measured. The three trials differed as follows: 1) saline [control (CON)], 2) glucagon-like peptide (GLP-1, 0.5 pmol·kg(-1)·min(-1)), and 3) glucose-dependent insulinotropic polypeptide (GIP, 1.5 pmol·kg(-1)·min(-1)). No between-trial differences in glucose infusion rates (GIR) or glucose or glycerol kinetics were seen during euglycemia, whereas hyperglycemia resulted in increased GIR and glucose rate of disappearance during GLP-1 compared with CON and GIP (P<0.01 for all). However, when normalized to insulin levels, no differences between trials were seen for GIR or glucose rate of disappearance. Besides a higher femoral blood flow during hyperglycemia with GIP (vs. CON and GLP-1, P<0.001), no between-trial differences were seen for the hemodynamic variables. In conclusion, GLP-1 and GIP have no direct effect on whole body glucose metabolism or hemodynamics during euglycemia. On the contrary, during hyperglycemia, GIP increases femoral artery blood flow with no effect on glucose metabolism, whereas GLP-1 increases glucose disposal, potentially due to increased insulin levels.


Assuntos
Glucose/metabolismo , Glicerol/metabolismo , Hemodinâmica/efeitos dos fármacos , Incretinas/farmacologia , Adolescente , Adulto , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Artéria Carótida Primitiva/efeitos dos fármacos , Artéria Carótida Primitiva/fisiologia , Técnica Clamp de Glucose , Frequência Cardíaca/efeitos dos fármacos , Humanos , Hiperglicemia/metabolismo , Masculino , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos , Adulto Jovem
9.
Exp Physiol ; 99(12): 1552-8, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25192730

RESUMO

In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators, including NO and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and, very importantly, can offset local sympathetic vasoconstriction. Adenosine triphosphate is released into plasma from erythrocytes and endothelial cells, and the plasma concentration increases in both the feed artery and the vein draining the contracting skeletal muscle. Adenosine also stimulates the formation of NO and prostaglandins, but the plasma adenosine concentration does not increase during exercise. In the skeletal muscle interstitium, there is a marked increase in the concentration of ATP and adenosine, and this increase is tightly coupled to the increase in blood flow. The sources of interstitial ATP and adenosine are thought to be skeletal muscle cells and endothelial cells. In the interstitium, both ATP and adenosine stimulate the formation of NO and prostaglandins, but ATP has also been suggested to induce vasoconstriction and stimulate afferent nerves that signal to increase sympathetic nerve activity. Adenosine has been shown to contribute to exercise hyperaemia, whereas the role of ATP remains uncertain due to lack of specific purinergic receptor blockers for human use. The purpose of this review is to address the interaction between vasodilator systems and to discuss the multiple proposed roles of ATP in human skeletal muscle blood flow regulation.


Assuntos
Exercício Físico/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/irrigação sanguínea , Fluxo Sanguíneo Regional/fisiologia , Humanos , Músculo Esquelético/fisiologia
10.
Exp Physiol ; 99(10): 1399-408, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25085840

RESUMO

The present study examined whether an increase in leg blood flow and oxygen delivery at the onset of intense exercise would speed the rate of rise in leg oxygen uptake. Nine healthy men (25 ± 1 years old, mean ± SEM) performed one-leg knee-extensor exercise (62 ± 3 W, 86 ± 3% of incremental test peak power) for 4 min during a control setting (CON) and with infusion of ATP into the femoral artery in order to increase blood flow before and during exercise. In the presence of ATP, femoral arterial blood flow and O2 delivery were higher (P < 0.001) at the onset of exercise and throughout exercise (femoral arterial blood flow after 10 s, 5.1 ± 0.5 versus 2.7 ± 0.3 l min(-1); after 45 s, 6.0 ± 0.5 versus 4.1 ± 0.4 l min(-1); after 90 s, 6.6 ± 0.6 versus 4.5 ± 0.4 l min(-1); and after 240 s, 7.0 ± 0.6 versus 5.1 ± 0.3 l min(-1) in ATP and CON conditions, respectively). Leg oxygen uptake was not different in ATP and CON conditions during the first 20 s of exercise but was lower (P < 0.05) in the ATP compared with CON conditions after 30 s and until the end of exercise (30 s, 436 ± 42 versus 549 ± 45 ml min(-1); and 240 s, 705 ± 31 versus 814 ± 59 ml min(-1) in ATP and CON, respectively). Lactate release was lower after 60, 120 and 180 s of exercise with ATP infusion. These results suggest that O2 delivery is not limiting the rise in skeletal muscle oxygen uptake in the initial phase of intense exercise.


Assuntos
Trifosfato de Adenosina/farmacologia , Perna (Membro)/irrigação sanguínea , Músculo Esquelético/irrigação sanguínea , Consumo de Oxigênio/efeitos dos fármacos , Oxigênio/sangue , Fluxo Sanguíneo Regional/efeitos dos fármacos , Adulto , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos , Adulto Jovem
11.
J Physiol ; 592(14): 3063-73, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24860173

RESUMO

Essential hypertension is linked to an increased sympathetic vasoconstrictor activity and reduced tissue perfusion. We investigated the role of exercise training on functional sympatholysis and postjunctional α-adrenergic responsiveness in individuals with essential hypertension. Leg haemodynamics were measured before and after 8 weeks of aerobic training (3-4 times per week) in eight hypertensive (47 ± 2 years) and eight normotensive untrained individuals (46 ± 1 years) during arterial tyramine infusion, arterial ATP infusion and/or one-legged knee extensions. Before training, exercise hyperaemia and leg vascular conductance (LVC) were lower in the hypertensive individuals (P < 0.05) and tyramine lowered exercise hyperaemia and LVC in both groups (P < 0.05). Training lowered blood pressure in the hypertensive individuals (P < 0.05) and exercise hyperaemia was similar to the normotensive individuals in the trained state. After training, tyramine did not reduce exercise hyperaemia or LVC in either group. When tyramine was infused at rest, the reduction in blood flow and LVC was similar between groups, but exercise training lowered the magnitude of the reduction in blood flow and LVC (P < 0.05). There was no difference in the vasodilatory response to infused ATP or in muscle P2Y2 receptor content between the groups before and after training. However, training lowered the vasodilatory response to ATP and increased skeletal muscle P2Y2 receptor content in both groups (P < 0.05). These results demonstrate that exercise training improves functional sympatholysis and reduces postjunctional α-adrenergic responsiveness in both normo- and hypertensive individuals. The ability for functional sympatholysis and the vasodilator and sympatholytic effect of intravascular ATP appear not to be altered in essential hypertension.


Assuntos
Exercício Físico/fisiologia , Hipertensão/fisiopatologia , Trifosfato de Adenosina/farmacologia , Inibidores da Captação Adrenérgica/farmacologia , Feminino , Hemodinâmica , Humanos , Perna (Membro)/fisiologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Receptores Purinérgicos P2X1/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Simpatomiméticos/farmacologia , Tiramina/farmacologia , Vasodilatadores/farmacologia
12.
Free Radic Biol Med ; 73: 166-73, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24858720

RESUMO

Reactive oxygen species (ROS) are important signaling molecules with regulatory functions, and in young and adult organisms, the formation of ROS is increased during skeletal muscle contractions. However, ROS can be deleterious to cells when not sufficiently counterbalanced by the antioxidant system. Aging is associated with accumulation of oxidative damage to lipids, DNA, and proteins. Given the pro-oxidant effect of skeletal muscle contractions, this effect of age could be a result of excessive ROS formation. We evaluated the effect of acute exercise on changes in blood redox state across the leg of young (23 ± 1 years) and older (66 ± 2 years) sedentary humans by measuring the whole blood concentration of the reduced (GSH) and oxidized (GSSG) forms of the antioxidant glutathione. To assess the role of physical activity, lifelong physically active older subjects (62 ± 2 years) were included. Exercise increased the venous concentration of GSSG in an intensity-dependent manner in young sedentary subjects, suggesting an exercise-induced increase in ROS formation. In contrast, venous GSSG levels remained unaltered during exercise in the older sedentary and active groups despite a higher skeletal muscle expression of the superoxide-generating enzyme NADPH oxidase. Arterial concentration of GSH and expression of antioxidant enzymes in skeletal muscle of older active subjects were increased. The potential impairment in exercise-induced ROS formation may be an important mechanism underlying skeletal muscle and vascular dysfunction with sedentary aging. Lifelong physical activity upregulates antioxidant systems, which may be one of the mechanisms underlying the lack of exercise-induced increase in GSSG.


Assuntos
Exercício Físico/fisiologia , Glutationa/sangue , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Comportamento Sedentário , Adulto , Idoso , Envelhecimento , Antioxidantes/análise , Catalase/biossíntese , Glutationa Peroxidase/biossíntese , Humanos , Perna (Membro)/fisiologia , Peroxidação de Lipídeos , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , NADPH Oxidases/biossíntese , Oxirredução , Estresse Oxidativo , Fosfoproteínas/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/biossíntese , Superóxido Dismutase-1 , Adulto Jovem , Glutationa Peroxidase GPX1
13.
Am J Physiol Regul Integr Comp Physiol ; 305(3): R281-90, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23761642

RESUMO

During skeletal muscle contractions, the concentration of ATP increases in muscle interstitial fluid as measured by microdialysis probes. This increase is associated with the magnitude of blood flow, suggesting that interstitial ATP may be important for contraction-induced vasodilation. However, interstitial ATP has solely been described to induce vasoconstriction in skeletal muscle. To examine whether interstitial ATP induces vasodilation in skeletal muscle and to what extent this vasoactive effect is mediated by formation of nitric oxide (NO) and prostanoids, three different experimental models were studied. The rat gluteus maximus skeletal muscle model was used to study changes in local skeletal muscle hemodynamics. Superfused ATP at concentrations found during muscle contractions (1-10 µM) increased blood flow by up to 400%. In this model, the underlying mechanism was also examined by inhibition of NO and prostanoid formation. Inhibition of these systems abolished the vasodilator effect of ATP. Cell-culture experiments verified ATP-induced formation of NO and prostacyclin in rat skeletal muscle microvascular endothelial cells, and ATP-induced formation of NO in rat skeletal muscle cells. To confirm these findings in humans, ATP was infused into skeletal muscle interstitium of healthy subjects via microdialysis probes and found to increase muscle interstitial concentrations of NO and prostacyclin by ~60% and ~40%, respectively. Collectively, these data suggest that a physiologically relevant elevation in interstitial ATP concentrations increases muscle blood flow, indicating that the contraction-induced increase in skeletal muscle interstitial [ATP] is important for exercise hyperemia. The vasodilator effect of ATP application is mediated by NO and prostanoid formation.


Assuntos
Trifosfato de Adenosina/farmacologia , Tono Muscular/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia , 6-Cetoprostaglandina F1 alfa/metabolismo , Trifosfato de Adenosina/administração & dosagem , Adulto , Animais , Velocidade do Fluxo Sanguíneo , Células Cultivadas , Eritrócitos/fisiologia , Feminino , Corantes Fluorescentes , Humanos , Hiperemia/fisiopatologia , Injeções , Masculino , Microdiálise , Pessoa de Meia-Idade , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/fisiologia , Nitratos/metabolismo , Nitritos/metabolismo , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/efeitos dos fármacos , Vasodilatação/fisiologia
14.
Hypertension ; 61(5): 1126-33, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23478101

RESUMO

Endurance training lowers heart rate and blood pressure responses to exercise, but the mechanisms and consequences remain unclear. To determine the role of skeletal muscle for the cardioventilatory response to exercise, 8 healthy young men were studied before and after 5 weeks of 1-legged knee-extensor training and 2 weeks of deconditioning of the other leg (leg cast). Hemodynamics and muscle interstitial nucleotides were determined during exercise with the (1) deconditioned leg, (2) trained leg, and (3) trained leg with atrial pacing to the heart rate obtained with the deconditioned leg. Heart rate was ≈ 15 bpm lower during exercise with the trained leg (P<0.05), but stroke volume was higher (P<0.05) and cardiac output was similar. Arterial and central venous pressures, rate-pressure product, and ventilation were lower during exercise with the trained leg (P<0.05), whereas pulmonary capillary wedge pressure was similar. When heart rate was controlled by atrial pacing, stroke volume decreased (P<0.05), but cardiac output, peripheral blood flow, arterial pressures, and pulmonary capillary wedge pressure remained unchanged. Circulating [norepinephrine], [lactate] and [K(+)] were lower and interstitial [ATP] and pH were higher in the trained leg (P<0.05). The lower cardioventilatory response to exercise with the trained leg is partly coupled to a reduced signaling from skeletal muscle likely mediated by K(+), lactate, or pH, whereas the lower cardiac afterload increases stroke volume. These results demonstrate that skeletal muscle training reduces the cardioventilatory response to exercise without compromising O2 delivery, and it can therefore be used to reduce the load on the heart during physical activity.


Assuntos
Trifosfato de Adenosina/fisiologia , Pressão Sanguínea/fisiologia , Exercício Físico/fisiologia , Frequência Cardíaca/fisiologia , Perna (Membro)/fisiologia , Músculo Esquelético/fisiologia , Resistência Física/fisiologia , Adulto , Débito Cardíaco/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Lactatos/sangue , Masculino , Norepinefrina/sangue , Potássio/sangue , Pressão Propulsora Pulmonar/fisiologia , Volume Sistólico/fisiologia
15.
J Physiol ; 590(24): 6269-75, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22988143

RESUMO

Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the α-receptor. Tyramine induces local NA release and can be used in humans to investigate the underlying mechanisms and physiological importance of functional sympatholysis in the muscles of healthy and diseased individuals as well as the impact of the active muscles' training status. In sedentary elderly men, functional sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients with essential hypertension have impaired functional sympatholysis in the forearm, and reduced exercise hyperaemia in the leg, but this can be normalized by aerobic exercise training. The effect of physical activity on the local mechanisms that modulate sympathetic vasoconstriction is clear, but it remains uncertain which locally released substance(s) block the effect of NA and how this is accomplished. NO and ATP have been proposed as important inhibitors of NA mediated vasoconstriction and presently an inhibitory effect of ATP on NA signalling via P2 receptors appears most likely.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Exercício Físico , Hemodinâmica , Contração Muscular , Músculo Esquelético/irrigação sanguínea , Sistema Nervoso Simpático/fisiopatologia , Trifosfato de Adenosina/metabolismo , Fatores Etários , Envelhecimento , Animais , Vasos Sanguíneos/inervação , Doenças Cardiovasculares/metabolismo , Metabolismo Energético , Feminino , Humanos , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Receptores Purinérgicos P2/metabolismo , Fluxo Sanguíneo Regional , Sistema Nervoso Simpático/metabolismo , Tiramina/metabolismo , Vasoconstrição , Vasodilatação
16.
Am J Physiol Regul Integr Comp Physiol ; 303(8): R843-9, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22933023

RESUMO

In response to hypoxic breathing most studies report slower pulmonary oxygen uptake (Vo2) kinetics at the onset of exercise, but it is not known if this relates to an actual slowing of the Vo2 in the active muscles(.) The aim of the present study was to evaluate whether thigh Vo2 is slowed at the onset of intense exercise during acute exposure to hypoxia. Six healthy male subjects (25.8 ± 1.4 yr, 79.8 ± 4.0 kg, means ± SE) performed intense (100 ± 6 watts) two-legged knee-extensor exercise for 2 min in normoxia (NOR) and hypoxia [fractional inspired oxygen concentration (Fi(O2)) = 0.13; HYP]. Thigh Vo2 was measured by frequent arterial and venous blood sampling and blood flow measurements. In arterial blood, oxygen content was reduced (P < 0.05) from 191 ± 5 ml O2/l in NOR to 180 ± 5 ml O2/l in HYP, and oxygen pressure was reduced (P < 0.001) from 111 ± 4 mmHg in NOR to 63 ± 4 mmHg in HYP. Thigh blood flow was the same in NOR and HYP, and thigh oxygen delivery was consequently reduced (P < 0.05) in HYP, but femoral arterial-venous oxygen difference and thigh Vo(2) were similar in NOR and HYP. In addition, muscle lactate release was the same in NOR and HYP, and muscle lactate accumulation during the first 25 s of exercise determined from muscle biopsy sampling was also similar (0.35 ± 0.07 and 0.36 ± 0.07 mmol·kg dry wt(-1)·s(-1) in NOR and HYP). Thus the increase in thigh Vo2 was not attenuated at the onset of intense knee-extensor exercise despite a reduction in oxygen delivery and pressure.


Assuntos
Exercício Físico , Hipóxia/sangue , Contração Muscular , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Oxigênio/sangue , Adulto , Limiar Anaeróbio , Análise de Variância , Biópsia , Dinamarca , Método Duplo-Cego , Teste de Esforço , Humanos , Hipóxia/fisiopatologia , Ácido Láctico/metabolismo , Masculino , Músculo Esquelético/irrigação sanguínea , Pressão , Fluxo Sanguíneo Regional , Coxa da Perna , Fatores de Tempo , Adulto Jovem
17.
J Physiol ; 590(21): 5361-70, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22890714

RESUMO

Ageing has been proposed to be associated with increased levels of reactive oxygen species (ROS) that scavenge nitric oxide (NO). In eight young sedentary (23 ± 1 years; Y), eight older lifelong sedentary (66 ± 2 years; OS) and eight older lifelong physically active subjects (62 ± 2 years; OA), we studied the effect of ROS on systemic and skeletal muscle NO bioavailability and leg blood flow by infusion of the antioxidant N-acetylcysteine (NAC). Infusion of NAC increased the bioavailability of NO in OS, as evidenced by an increased concentration of stable metabolites of NO (NOx) in the arterial and venous circulation and in the muscle interstitium. In OA, infusion of NAC only increased NOx concentrations in venous plasma whereas in Y, infusion of NAC did not affect NOx concentrations. Skeletal muscle protein levels of endothelial and neuronal NO synthase were 32% and 24% higher, respectively, in OA than in OS. Exercise at 12 W elicited a lower leg blood flow response that was associated with a lower leg oxygen uptake in OS than in Y. The improved bioavailability of NO in OS did not increase blood flow during exercise. These data demonstrate that NO bioavailability is compromised in the systemic circulation and in the musculature of sedentary ageing humans due to increased oxidative stress. Lifelong physical activity opposes this effect within the trained musculature and in the arterial circulation. The lower blood flow response to leg exercise in ageing humans is not associated with a reduced NO bioavailability.


Assuntos
Envelhecimento/fisiologia , Artéria Femoral/fisiologia , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Óxido Nítrico/fisiologia , Acetilcolina/farmacologia , Acetilcisteína/farmacologia , Adulto , Idoso , Antioxidantes/farmacologia , Humanos , Perna (Membro)/irrigação sanguínea , Masculino , Pessoa de Meia-Idade , Nitratos/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Nitritos/metabolismo , Norepinefrina/metabolismo , Fluxo Sanguíneo Regional , Adulto Jovem
18.
J Physiol ; 589(Pt 7): 1847-57, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21300753

RESUMO

Intraluminal ATP could play an important role in the local regulation of skeletal muscle blood flow, but the stimuli that cause ATP release and the levels of plasma ATP in vessels supplying and draining human skeletal muscle remain unclear. To gain insight into the mechanisms by which ATP is released into plasma, we measured plasma [ATP] with the intravascular microdialysis technique at rest and during dynamic exercise (normoxia and hypoxia), passive exercise, thigh compressions and arterial ATP, tyramine and ACh infusion in a total of 16 healthy young men. Femoral arterial and venous [ATP] values were 109 ± 34 and 147 ± 45 nmol l(−1) at rest and increased to 363 ± 83 and 560 ± 111 nmol l(−1), respectively, during exercise (P < 0.05), whereas these values did not increase when exercise was performed with the other leg. Hypoxia increased venous plasma [ATP] at rest compared to normoxia (P < 0.05), but not during exercise. Arterial ATP infusion (≤1.8 µmol min(−1) increased arterial plasma [ATP] from 74 ± 17 to 486 ± 82 nmol l(−1) (P < 0.05), whereas it remained unchanged in the femoral vein at ∼150 nmol l(−1). Both arterial and venous plasma [ATP] decreased during acetylcholine infusion (P < 0.05). Rhythmic thigh compressions increased arterial and venous plasma [ATP] compared to baseline conditions, whereas these values did not change during passive exercise or tyramine infusion. These results demonstrate that ATP is released locally into arterial and venous plasma during exercise and during hypoxia at rest. Compression of the vascular system could contribute to the increase during exercise whereas there appears to be little ATP release in response to increased blood flow, vascular stretch or sympathetic ATP release. Furthermore, the half-life of arterially infused ATP is <1 s.


Assuntos
Trifosfato de Adenosina/sangue , Trifosfato de Adenosina/metabolismo , Músculo Esquelético/irrigação sanguínea , Acetilcolina/administração & dosagem , Adulto , Exercício Físico/fisiologia , Artéria Femoral , Veia Femoral , Hemodinâmica , Humanos , Hipóxia/sangue , Infusões Intra-Arteriais , Masculino , Microdiálise/métodos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Tiramina/administração & dosagem , Vasodilatação/fisiologia , Adulto Jovem
19.
Hypertension ; 56(6): 1102-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21041702

RESUMO

One major unresolved issue in muscle blood flow regulation is that of the role of circulating versus interstitial vasodilatory compounds. The present study determined adenosine-induced formation of NO and prostacyclin in the human muscle interstitium versus in femoral venous plasma to elucidate the interaction and importance of these vasodilators in the 2 compartments. To this end, we performed experiments on humans using microdialysis technique in skeletal muscle tissue, as well as the femoral vein, combined with experiments on cultures of microvascular endothelial versus skeletal muscle cells. In young healthy humans, microdialysate was collected at rest, during arterial infusion of adenosine, and during interstitial infusion of adenosine through microdialysis probes inserted into musculus vastus lateralis. Muscle interstitial NO and prostacyclin increased with arterial and interstitial infusion of adenosine. The addition of adenosine to skeletal muscle cells increased NO formation (fluorochrome 4-amino-5-methylamino-2',7-difluorescein fluorescence), whereas prostacyclin levels remained unchanged. The addition of adenosine to microvascular endothelial cells induced an increase in NO and prostacyclin levels. These findings provide novel insight into the role of adenosine in skeletal muscle blood flow regulation and vascular function by revealing that both interstitial and plasma adenosine have a stimulatory effect on NO and prostacyclin formation. In addition, both skeletal muscle and microvascular endothelial cells are potential mediators of adenosine-induced formation of NO in vivo, whereas only endothelial cells appear to play a role in adenosine-induced formation of prostacyclin.


Assuntos
Adenosina/sangue , Epoprostenol/metabolismo , Líquido Extracelular/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Adenosina/farmacologia , Adulto , Animais , Líquido Extracelular/química , Veia Femoral/metabolismo , Humanos , Hiperemia/metabolismo , Masculino , Microvasos/metabolismo , Microvasos/fisiologia , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Ratos , Ratos Wistar , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Adulto Jovem
20.
J Appl Physiol (1985) ; 107(6): 1757-62, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19797688

RESUMO

ATP has been proposed to play multiple roles in local skeletal muscle blood flow regulation by inducing vasodilation and modulating sympathetic vasoconstrictor activity, but the mechanisms remain unclear. Here we evaluated the effects of arterial ATP infusion and exercise on leg muscle interstitial ATP and norepinephrine (NE) concentrations to gain insight into the interstitial and intravascular mechanisms by which ATP causes muscle vasodilation and sympatholysis. Leg hemodynamics and muscle interstitial nucleotide and NE concentrations were measured during 1) femoral arterial ATP infusion (0.42 +/- 0.04 and 2.26 +/- 0.52 micromol/min; mean +/- SE) and 2) one-leg knee-extensor exercise (18 +/- 0 and 37 +/- 2 W) in 10 healthy men. Arterial ATP infusion and exercise increased leg blood flow (LBF) in the experimental leg from approximately 0.3 l/min at baseline to 4.2 +/- 0.3 and 4.6 +/- 0.5 l/min, respectively, whereas it was reduced or unchanged in the control leg. During arterial ATP infusion, muscle interstitial ATP, ADP, AMP, and adenosine concentrations remained unchanged in both legs, but muscle interstitial NE increased from approximately 5.9 nmol/l at baseline to 8.3 +/- 1.2 and 8.7 +/- 0.7 nmol/l in the experimental and control leg, respectively (P < 0.05), in parallel to a reduction in arterial pressure (P < 0.05). During exercise, however, interstitial ATP, ADP, AMP, and adenosine concentrations increased in the contracting muscle (P < 0.05), but not in inactive muscle, whereas interstitial NE concentrations increased similarly in both active and inactive muscles. These results suggest that the vasodilatory and sympatholytic effects of intraluminal ATP are mainly mediated via endothelial purinergic receptors. Intraluminal ATP and muscle contractions appear to modulate sympathetic nerve activity by inhibiting the effect of NE rather than blunting its local concentration.


Assuntos
Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Exercício Físico/fisiologia , Perna (Membro)/fisiologia , Músculo Esquelético/metabolismo , Norepinefrina/metabolismo , Adulto , Análise de Variância , Cateteres de Demora , Eletrocardiografia , Frequência Cardíaca/fisiologia , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Humanos , Perna (Membro)/irrigação sanguínea , Masculino , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA