Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(8): e3002217, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535677

RESUMO

Animal venom peptides represent valuable compounds for biomedical exploration. The venoms of marine cone snails constitute a particularly rich source of peptide toxins, known as conotoxins. Here, we identify the sequence of an unusually large conotoxin, Mu8.1, which defines a new class of conotoxins evolutionarily related to the well-known con-ikot-ikots and 2 additional conotoxin classes not previously described. The crystal structure of recombinant Mu8.1 displays a saposin-like fold and shows structural similarity with con-ikot-ikot. Functional studies demonstrate that Mu8.1 curtails calcium influx in defined classes of murine somatosensory dorsal root ganglion (DRG) neurons. When tested on a variety of recombinantly expressed voltage-gated ion channels, Mu8.1 displayed the highest potency against the R-type (Cav2.3) calcium channel. Ca2+ signals from Mu8.1-sensitive DRG neurons were also inhibited by SNX-482, a known spider peptide modulator of Cav2.3 and voltage-gated K+ (Kv4) channels. Our findings highlight the potential of Mu8.1 as a molecular tool to identify and study neuronal subclasses expressing Cav2.3. Importantly, this multidisciplinary study showcases the potential of uncovering novel structures and bioactivities within the largely unexplored group of macro-conotoxins.


Assuntos
Conotoxinas , Camundongos , Animais , Conotoxinas/farmacologia , Conotoxinas/química , Canais de Cálcio , Peptídeos/química , Células Receptoras Sensoriais/metabolismo , Caramujos
2.
Circulation ; 147(16): 1221-1236, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36876489

RESUMO

BACKGROUND: Increasing SERCA2 (sarco[endo]-plasmic reticulum Ca2+ ATPase 2) activity is suggested to be beneficial in chronic heart failure, but no selective SERCA2-activating drugs are available. PDE3A (phosphodiesterase 3A) is proposed to be present in the SERCA2 interactome and limit SERCA2 activity. Disruption of PDE3A from SERCA2 might thus be a strategy to develop SERCA2 activators. METHODS: Confocal microscopy, 2-color direct stochastic optical reconstruction microscopy, proximity ligation assays, immunoprecipitations, peptide arrays, and surface plasmon resonance were used to investigate colocalization between SERCA2 and PDE3A in cardiomyocytes, map the SERCA2/PDE3A interaction sites, and optimize disruptor peptides that release PDE3A from SERCA2. Functional experiments assessing the effect of PDE3A-binding to SERCA2 were performed in cardiomyocytes and HEK293 vesicles. The effect of SERCA2/PDE3A disruption by the disruptor peptide OptF (optimized peptide F) on cardiac mortality and function was evaluated during 20 weeks in 2 consecutive randomized, blinded, and controlled preclinical trials in a total of 148 mice injected with recombinant adeno-associated virus 9 (rAAV9)-OptF, rAAV9-control (Ctrl), or PBS, before undergoing aortic banding (AB) or sham surgery and subsequent phenotyping with serial echocardiography, cardiac magnetic resonance imaging, histology, and functional and molecular assays. RESULTS: PDE3A colocalized with SERCA2 in human nonfailing, human failing, and rodent myocardium. Amino acids 277-402 of PDE3A bound directly to amino acids 169-216 within the actuator domain of SERCA2. Disruption of PDE3A from SERCA2 increased SERCA2 activity in normal and failing cardiomyocytes. SERCA2/PDE3A disruptor peptides increased SERCA2 activity also in the presence of protein kinase A inhibitors and in phospholamban-deficient mice, and had no effect in mice with cardiomyocyte-specific inactivation of SERCA2. Cotransfection of PDE3A reduced SERCA2 activity in HEK293 vesicles. Treatment with rAAV9-OptF reduced cardiac mortality compared with rAAV9-Ctrl (hazard ratio, 0.26 [95% CI, 0.11 to 0.63]) and PBS (hazard ratio, 0.28 [95% CI, 0.09 to 0.90]) 20 weeks after AB. Mice injected with rAAV9-OptF had improved contractility and no difference in cardiac remodeling compared with rAAV9-Ctrl after aortic banding. CONCLUSIONS: Our results suggest that PDE3A regulates SERCA2 activity through direct binding, independently of the catalytic activity of PDE3A. Targeting the SERCA2/PDE3A interaction prevented cardiac mortality after AB, most likely by improving cardiac contractility.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Insuficiência Cardíaca , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , Humanos , Camundongos , Cálcio/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Insuficiência Cardíaca/metabolismo , Células HEK293 , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
3.
J Am Heart Assoc ; 11(7): e021814, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35289188

RESUMO

Background Mutations in ATP1A2 gene encoding the Na,K-ATPase α2 isoform are associated with familial hemiplegic migraine type 2. Migraine with aura is a known risk factor for heart disease. The Na,K-ATPase is important for cardiac function, but its role for heart disease remains unknown. We hypothesized that ATP1A2 is a susceptibility gene for heart disease and aimed to assess the underlying disease mechanism. Methods and Results Mice heterozygous for the familial hemiplegic migraine type 2-associated G301R mutation in the Atp1a2 gene (α2+/G301R mice) and matching wild-type controls were compared. Reduced expression of the Na,K-ATPase α2 isoform and increased expression of the α1 isoform were observed in hearts from α2+/G301R mice (Western blot). Left ventricular dilation and reduced ejection fraction were shown in hearts from 8-month-old α2+/G301R mice (cardiac magnetic resonance imaging), and this was associated with reduced nocturnal blood pressure (radiotelemetry). Cardiac function and blood pressure of 3-month-old α2+/G301R mice were similar to wild-type mice. Amplified Na,K-ATPase-dependent Src kinase/Ras/Erk1/2 (p44/42 mitogen-activated protein kinase) signaling was observed in hearts from 8-month-old α2+/G301R mice, and this was associated with mitochondrial uncoupling (respirometry), increased oxidative stress (malondialdehyde measurements), and a heart failure-associated metabolic shift (hyperpolarized magnetic resonance). Mitochondrial membrane potential (5,5´,6,6´-tetrachloro-1,1´,3,3´-tetraethylbenzimidazolocarbocyanine iodide dye assay) and mitochondrial ultrastructure (transmission electron microscopy) were similar between the groups. Proteomics of heart tissue further suggested amplified Src/Ras/Erk1/2 signaling and increased oxidative stress and provided the molecular basis for systolic dysfunction in 8-month-old α2+/G301R mice. Conclusions Our findings suggest that ATP1A2 mutation leads to disturbed cardiac metabolism and reduced cardiac function mediated via Na,K-ATPase-dependent reactive oxygen species signaling through the Src/Ras/Erk1/2 pathway.


Assuntos
Coração , Transtornos de Enxaqueca , Enxaqueca com Aura , ATPase Trocadora de Sódio-Potássio , Animais , Coração/fisiopatologia , Heterozigoto , Camundongos , Enxaqueca com Aura/metabolismo , Mutação , Miocárdio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
4.
Biomolecules ; 10(4)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316569

RESUMO

Magnesium transporter A (MgtA) is an active transporter responsible for importing magnesium ions into the cytoplasm of prokaryotic cells. This study focuses on the peptide corresponding to the intrinsically disordered N-terminal region of MgtA, referred to as KEIF. Primary-structure and bioinformatic analyses were performed, followed by studies of the undisturbed single chain using a combination of techniques including small-angle X-ray scattering, circular dichroism spectroscopy, and atomistic molecular-dynamics simulations. Moreover, interactions with large unilamellar vesicles were investigated by using dynamic light scattering, laser Doppler velocimetry, cryogenic transmission electron microscopy, and circular dichroism spectroscopy. KEIF was confirmed to be intrinsically disordered in aqueous solution, although extended and containing little ß -structure and possibly PPII structure. An increase of helical content was observed in organic solvent, and a similar effect was also seen in aqueous solution containing anionic vesicles. Interactions of cationic KEIF with anionic vesicles led to the hypothesis that KEIF adsorbs to the vesicle surface through electrostatic and entropic driving forces. Considering this, there is a possibility that the biological role of KEIF is to anchor MgtA in the cell membrane, although further investigation is needed to confirm this hypothesis.


Assuntos
Adenosina Trifosfatases/química , Fenômenos Químicos , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas de Membrana Transportadoras/química , Adenosina Trifosfatases/ultraestrutura , Motivos de Aminoácidos , Sequência de Aminoácidos , Dicroísmo Circular , Proteínas de Escherichia coli/ultraestrutura , Proteínas Intrinsicamente Desordenadas/ultraestrutura , Lipídeos/química , Proteínas de Membrana Transportadoras/ultraestrutura , Simulação de Dinâmica Molecular , Tamanho da Partícula , Probabilidade , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Lipossomas Unilamelares/química , Difração de Raios X
5.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 660-667, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29246447

RESUMO

Activated factor (F) VII is a vitamin K-dependent glycoprotein that initiates blood coagulation upon interaction with tissue factor. FVII deficiency is the most common of the rare congenital bleeding disorders. While the mutational pattern has been extensively characterized, the pathogenic molecular mechanisms of mutations, particularly at the intracellular level, have been poorly defined. Here, we aimed at elucidating the mechanisms underlying altered FVII biosynthesis in the presence of three mutation types in the catalytic domain: a missense change, a microdeletion and a frameshift/elongation, associated with severe or moderate to severe phenotypes. Using CHO-K1 cells transiently transfected with expression vectors containing the wild-type FVII cDNA (FVIIwt) or harboring the p.I289del, p.G420V or p.A354V-p.P464Hfs mutations, we found that the secretion of the FVII mutants was severely decreased compared to FVIIwt. The synthesis rate of the mutants was slower than the FVIIwt and delayed, and no degradation of the FVII mutants by proteasomes, lysosomes or cysteine proteases was observed. Confocal immunofluorescence microscopy studies showed that FVII variants were localized into the endoplasmic reticulum (ER) but were not detectable within the Golgi apparatus. These findings suggested that a common pathogenic mechanism, possibly a defective folding of the mutant proteins, was triggered by the FVII mutations. The misfolded state led to impaired trafficking of these proteins causing ER retention, which would explain the low to very low FVII plasma levels observed in patients carrying these mutations.


Assuntos
Domínio Catalítico/genética , Deficiência do Fator VII/genética , Fator VII/química , Fator VII/genética , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Retículo Endoplasmático/metabolismo , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Dobramento de Proteína , Transporte Proteico/genética , Transdução de Sinais/genética
6.
Data Brief ; 8: 733-40, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27508226

RESUMO

Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) has been implicated in a range of conditions and pathologies from prostate to hepatic cancer. Here, we describe the expression in Escherichia coli and the purification protocol for the following constructs: full-length CaMKK2 in complex with CaM, CaMKK2 'apo', CaMKK2 (165-501) in complex with CaM, and the CaMKK2 F267G mutant. The protocols described have been optimized for maximum yield and purity with minimal purification steps required and the proteins subsequently used to develop a fluorescence-based assay for drug binding to the kinase, "Using the fluorescent properties of STO-609 as a tool to assist structure-function analyses of recombinant CaMKK2" [1].

7.
Biochem Biophys Res Commun ; 476(2): 102-7, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27178209

RESUMO

Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) has been implicated in the regulation of metabolic activity in cancer and immune cells, and affects whole-body metabolism by regulating ghrelin-signalling in the hypothalamus. This has led to efforts to develop specific CaMKK2 inhibitors, and STO-609 is the standardly used CaMKK2 inhibitor to date. We have developed a novel fluorescence-based assay by exploiting the intrinsic fluorescence properties of STO-609. Here, we report an in vitro binding constant of KD ∼17 nM between STO-609 and purified CaMKK2 or CaMKK2:Calmodulin complex. Whereas high concentrations of ATP were able to displace STO-609 from the kinase, GTP was unable to achieve this confirming the specificity of this association. Recent structural studies on the kinase domain of CaMKK2 had implicated a number of amino acids involved in the binding of STO-609. Our fluorescent assay enabled us to confirm that Phe(267) is critically important for this association since mutation of this residue to a glycine abolished the binding of STO-609. An ATP replacement assay, as well as the mutation of the 'gatekeeper' amino acid Phe(267)Gly, confirmed the specificity of the assay and once more confirmed the strong binding of STO-609 to the kinase. In further characterising the purified kinase and kinase-calmodulin complex we identified a number of phosphorylation sites some of which corroborated previously reported CaMKK2 phosphorylation and some of which, particularly in the activation segment, were novel phosphorylation events. In conclusion, the intrinsic fluorescent properties of STO-609 provide a great opportunity to utilise this drug to label the ATP-binding pocket and probe the impact of mutations and other regulatory modifications and interactions on the pocket. It is however clear that the number of phosphorylation sites on CaMKK2 will pose a challenge in studying the impact of phosphorylation on the pocket unless the field can develop approaches to control the spectrum of modifications that occur during recombinant protein expression in Escherichia coli.


Assuntos
Benzimidazóis/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Corantes Fluorescentes/farmacologia , Naftalimidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Benzimidazóis/metabolismo , Sítios de Ligação , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/química , Calmodulina/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Corantes Fluorescentes/metabolismo , Humanos , Naftalimidas/metabolismo , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência/métodos
8.
Elife ; 52016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26780187

RESUMO

The magnesium transporter A (MgtA) is a specialized P-type ATPase, believed to import Mg(2+) into the cytoplasm. In Salmonella typhimurium and Escherichia coli, the virulence determining two-component system PhoQ/PhoP regulates the transcription of mgtA gene by sensing Mg(2+) concentrations in the periplasm. However, the factors that affect MgtA function are not known. This study demonstrates, for the first time, that MgtA is highly dependent on anionic phospholipids and in particular, cardiolipin. Colocalization studies confirm that MgtA is found in the cardiolipin lipid domains in the membrane. The head group of cardiolipin plays major role in activation of MgtA suggesting that cardiolipin may act as a Mg(2+) chaperone for MgtA. We further show that MgtA is highly sensitive to free Mg(2+) (Mg(2+)free) levels in the solution. MgtA is activated when the Mg(2+)free concentration is reduced below 10 µM and is strongly inhibited above 1 mM, indicating that Mg(2+)free acts as product inhibitor. Combined, our findings conclude that MgtA may act as a sensor as well as a transporter of Mg(2+).


Assuntos
Adenosina Trifosfatases/metabolismo , Cardiolipinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Magnésio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Membrana Celular/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-22505411

RESUMO

Ca(2+)-ATPases are members of a large family of membrane proteins that maintain the selective movement of cations across biological membranes. A putative Listeria monocytogenes Ca(2+)-ATPase (Lmo0818) was crystallized in an unknown functional state. The crystal belonged to space group P2(1)2(1)2(1) and a complete data set was collected to 3.2 Å resolution. The molecular-replacement solution obtained revealed that Lmo0818 is likely to adopt an E2-like state mimicking the phosphorylated intermediate in the functional cycle of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and a stacked bilayer `type I' packing in the crystal.


Assuntos
Adenosina Trifosfatases/química , Listeria monocytogenes/enzimologia , Adenosina Trifosfatases/isolamento & purificação , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Estrutura Quaternária de Proteína , Alinhamento de Sequência
10.
Artigo em Inglês | MEDLINE | ID: mdl-21636921

RESUMO

Ca(2+)-ATPases are ATP-driven membrane pumps that are responsible for the transport of Ca(2+) ions across the membrane. The Listeria monocytogenes Ca(2+)-ATPase LMCA1 has been crystallized in the Ca(2+)-free state stabilized by AlF(4)(-), representing an occluded E2-P(i)-like state. The crystals belonged to space group P2(1)2(1)2 and a complete data set extending to 4.3 Šresolution was collected. A molecular-replacement solution was obtained, revealing type I packing of the molecules in the crystal. Unbiased electron-density features were observed for AlF(4)(-) and for shifts of the helices, which were indicative of a reliable structure determination.


Assuntos
ATPases Transportadoras de Cálcio/química , Listeria monocytogenes/enzimologia , ATPases Transportadoras de Cálcio/isolamento & purificação , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
11.
Biochem Soc Trans ; 39(3): 823-31, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21599655

RESUMO

The disease malaria, caused by the parasite Plasmodium falciparum, remains one of the most important causes of morbidity and mortality in sub-Saharan Africa. In the absence of an efficient vaccine, the medical treatment of malaria is dependent on the use of drugs. Since artemisinin is a powerful anti-malarial drug which has been proposed to target a particular Ca2+-ATPase (PfATP6) in the parasite, it has been important to characterize the molecular properties of this enzyme. PfATP6 is a 139 kDa protein composed of 1228 amino acids with a 39% overall identity with rabbit SERCA1a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1a). PfATP6 conserves all sequences and motifs that are important for the function and/or structure of a SERCA, such as two high-affinity Ca2+-binding sites, a nucleotide-binding site and a phosphorylation site. We have been successful in isolating PfATP6 after heterologous expression in yeast and affinity chromatography in a pure, active and stable detergent-solubilized form. With this preparation, we have characterized and compared with the eukaryotic SERCA1a isoform the substrate (Ca2+ and ATP) -dependency for PfATP6 activity as well as the specific inhibition/interaction of the protein with drugs. Our data fully confirm that PfATP6 is a SERCA, but with a distinct pharmacological profile: compared with SERCA1a, it has a lower affinity for thapsigargin and much higher affinity for cyclopiazonic acid. On the other hand, we were not able to demonstrate any inhibition by artemisinin and were also not able to monitor any binding of the drug to the isolated enzyme. Thus it is unlikely that PfATP6 plays an important role as a target for artemisinin in the parasite P. falciparum.


Assuntos
Anti-Infecciosos/farmacologia , Artemisininas/farmacologia , ATPases Transportadoras de Cálcio/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Animais , Anti-Infecciosos/uso terapêutico , Artemisininas/uso terapêutico , Sítios de Ligação , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/genética , Desenho de Fármacos , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Malária/tratamento farmacológico , Modelos Moleculares , Conformação Proteica , Coelhos
12.
J Biol Chem ; 286(2): 1609-17, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21047776

RESUMO

We have characterized a putative Ca(2+)-ATPase from the pathogenic bacterium Listeria monocytogenes with the locus tag lmo0841. The purified and detergent-solubilized protein, which we have named Listeria monocytogenes Ca(2+)-ATPase 1 (LMCA1), performs a Ca(2+)-dependent ATP hydrolysis and actively transports Ca(2+) after reconstitution in dioleoylphosphatidyl-choline vesicles. Despite a high sequence similarity to the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) and plasma membrane Ca(2+)-ATPase (PMCA), LMCA1 exhibits important biochemical differences such as a low Ca(2+) affinity (K(0.5) ∼80 µm) and a high pH optimum (pH ∼9). Mutational studies indicate that the unusually high pH optimum can be partially ascribed to the presence of an arginine residue (Arg-795), corresponding in sequence alignments to the Glu-908 position at Ca(2+) binding site I of rabbit SERCA1a, but probably with an exposed position in LMCA1. The arginine is characteristic of a large group of putative bacterial Ca(2+)-ATPases. Moreover, we demonstrate that H(+) is countertransported with a transport stoichiometry of 1 Ca(2+) out and 1 H(+) in per ATP hydrolyzed. The ATPase may serve an important function by removing Ca(2+) from the microorganism in environmental conditions when e.g. stressed by high Ca(2+) and alkaline pH.


Assuntos
Cálcio/metabolismo , Listeria monocytogenes/enzimologia , Listeria monocytogenes/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Trifosfato de Adenosina/metabolismo , Álcalis/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Transporte Biológico Ativo/fisiologia , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Músculo Esquelético/enzimologia , Estrutura Terciária de Proteína , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
13.
J Biol Chem ; 283(41): 27982-27990, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18669634

RESUMO

A cytoplasmic nontransport K(+)/Rb(+) site in the P-domain of the Na(+), K(+)-ATPase has been identified by anomalous difference Fourier map analysis of crystals of the [Rb(2)].E(2).MgF(4)(2-) form of the enzyme. The functional roles of this third K(+)/Rb(+) binding site were studied by site-directed mutagenesis, replacing the side chain of Asp(742) donating oxygen ligand(s) to the site with alanine, glutamate, and lysine. Unlike the wild-type Na(+), K(+)-ATPase, the mutants display a biphasic K(+) concentration dependence of E(2)P dephosphorylation, indicating that the cytoplasmic K(+) site is involved in activation of dephosphorylation. The affinity of the site is lowered significantly (30-200-fold) by the mutations, the lysine mutation being most disruptive. Moreover, the mutations accelerate the E(2) to E(1) conformational transition, again with the lysine substitution resulting in the largest effect. Hence, occupation of the cytoplasmic K(+)/Rb(+) site not only enhances E(2)P dephosphorylation but also stabilizes the E(2) dephosphoenzyme. These characteristics of the previously unrecognized nontransport site make it possible to account for the hitherto poorly understood trans-effects of cytoplasmic K(+) by the consecutive transport model, without implicating a simultaneous exposure of the transport sites toward the cytoplasmic and extracellular sides of the membrane. The cytoplasmic K(+)/Rb(+) site appears to be conserved among Na(+), K(+)-ATPases and P-type ATPases in general, and its mode of operation may be associated with stabilizing the loop structure at the C-terminal end of the P6 helix of the P-domain, thereby affecting the function of highly conserved catalytic residues and promoting helix-helix interactions between the P- and A-domains in the E(2) state.


Assuntos
Citoplasma/enzimologia , Modelos Moleculares , ATPase Trocadora de Sódio-Potássio/química , Substituição de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Cristalografia por Raios X , Citoplasma/genética , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Fosforilação , Potássio/química , Potássio/metabolismo , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Ratos , Rubídio/química , Rubídio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA