Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
mSystems ; : e0029524, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078158

RESUMO

Microbiome studies have revealed gut microbiota's potential impact on complex diseases. However, many studies often focus on one disease per cohort. We developed a meta-analysis workflow for gut microbiome profiles and analyzed shotgun metagenomic data covering 11 diseases. Using interpretable machine learning and differential abundance analysis, our findings reinforce the generalization of binary classifiers for Crohn's disease (CD) and colorectal cancer (CRC) to hold-out cohorts and highlight the key microbes driving these classifications. We identified high microbial similarity in disease pairs like CD vs ulcerative colitis (UC), CD vs CRC, Parkinson's disease vs type 2 diabetes (T2D), and schizophrenia vs T2D. We also found strong inverse correlations in Alzheimer's disease vs CD and UC. These findings, detected by our pipeline, provide valuable insights into these diseases. IMPORTANCE: Assessing disease similarity is an essential initial step preceding a disease-based approach for drug repositioning. Our study provides a modest first step in underscoring the potential of integrating microbiome insights into the disease similarity assessment. Recent microbiome research has predominantly focused on analyzing individual diseases to understand their unique characteristics, which by design excludes comorbidities in individuals. We analyzed shotgun metagenomic data from existing studies and identified previously unknown similarities between diseases. Our research represents a pioneering effort that utilizes both interpretable machine learning and differential abundance analysis to assess microbial similarity between diseases.

2.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464323

RESUMO

Microbiome studies have revealed gut microbiota's potential impact on complex diseases. However, many studies often focus on one disease per cohort. We developed a meta-analysis workflow for gut microbiome profiles and analyzed shotgun metagenomic data covering 11 diseases. Using interpretable machine learning and differential abundance analysis, our findings reinforce the generalization of binary classifiers for Crohn's disease (CD) and colorectal cancer (CRC) to hold-out cohorts and highlight the key microbes driving these classifications. We identified high microbial similarity in disease pairs like CD vs ulcerative colitis (UC), CD vs CRC, Parkinson's disease vs type 2 diabetes (T2D), and schizophrenia vs T2D. We also found strong inverse correlations in Alzheimer's disease vs CD and UC. These findings detected by our pipeline provide valuable insights into these diseases.

3.
Microbiol Spectr ; 11(3): e0506622, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37042765

RESUMO

The gut microbiome is associated with survival in colorectal cancer. Single organisms have been identified as markers of poor prognosis. However, in situ imaging of tumors demonstrate a polymicrobial tumor-associated community. To understand the role of these polymicrobial communities in survival, we conducted a nested case-control study in late-stage cancer patients undergoing resection for primary adenocarcinoma. The microbiome of paired tumor and adjacent normal tissue samples was profiled using 16S rRNA sequencing. We found a consistent difference in the microbiome between paired tumor and adjacent tissue, despite strong individual microbial identities. Furthermore, a larger difference between normal and tumor tissue was associated with prognosis: patients with shorter survival had a larger difference between normal and tumor tissue. Within the tumor tissue, we identified a 39-member community statistic associated with survival; for every log2-fold increase in this value, an individual's odds of survival increased by 20% (odds ratio survival 1.20; 95% confidence interval = 1.04 to 1.33). Our results suggest that a polymicrobial tumor-specific microbiome is associated with survival in late-stage colorectal cancer patients. IMPORTANCE Microbiome studies in colorectal cancer (CRC) have primarily focused on the role of single organisms in cancer progression. Recent work has identified specific organisms throughout the intestinal tract, which may affect survival; however, the results are inconsistent. We found differences between the tumor microbiome and the microbiome of the rest of the intestine in patients, and the magnitude of this difference was associated with survival, or, the more like a healthy gut a tumor looked, the better a patient's prognosis. Our results suggest that future microbiome-based interventions to affect survival in CRC will need to target the tumor community.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Microbiota , Humanos , Estudos de Casos e Controles , RNA Ribossômico 16S/genética , Microbiota/genética , Microbioma Gastrointestinal/genética
4.
bioRxiv ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36778470

RESUMO

Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity) and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we present BIRDMAn (Bayesian Inferential Regression for Differential Microbiome Analysis), a flexible DA method that can account for microbiome data characteristics and diverse experimental designs. Simulations show that BIRDMAn models are robust to uneven sequencing depth and provide a >20-fold improvement in statistical power over existing methods. We then use BIRDMAn to identify antibiotic-mediated perturbations undetected by other DA methods due to subject-level heterogeneity. Finally, we demonstrate how BIRDMAn can construct state-of-the-art cancer-type classifiers using The Cancer Genome Atlas (TCGA) dataset, with substantial accuracy improvements over random forests and existing DA tools across multiple sequencing centers. Collectively, BIRDMAn extracts more informative biological signals while accounting for study-specific experimental conditions than existing approaches.

5.
Cancer Discov ; 11(2): 293-307, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33177060

RESUMO

In lung cancer, enrichment of the lower airway microbiota with oral commensals commonly occurs, and ex vivo models support that some of these bacteria can trigger host transcriptomic signatures associated with carcinogenesis. Here, we show that this lower airway dysbiotic signature was more prevalent in the stage IIIB-IV tumor-node-metastasis lung cancer group and is associated with poor prognosis, as shown by decreased survival among subjects with early-stage disease (I-IIIA) and worse tumor progression as measured by RECIST scores among subjects with stage IIIB-IV disease. In addition, this lower airway microbiota signature was associated with upregulation of the IL17, PI3K, MAPK, and ERK pathways in airway transcriptome, and we identified Veillonella parvula as the most abundant taxon driving this association. In a KP lung cancer model, lower airway dysbiosis with V. parvula led to decreased survival, increased tumor burden, IL17 inflammatory phenotype, and activation of checkpoint inhibitor markers. SIGNIFICANCE: Multiple lines of investigation have shown that the gut microbiota affects host immune response to immunotherapy in cancer. Here, we support that the local airway microbiota modulates the host immune tone in lung cancer, affecting tumor progression and prognosis.See related commentary by Zitvogel and Kroemer, p. 224.This article is highlighted in the In This Issue feature, p. 211.


Assuntos
Adenocarcinoma/mortalidade , Disbiose/complicações , Neoplasias Pulmonares/mortalidade , Adenocarcinoma/complicações , Adenocarcinoma/microbiologia , Adenocarcinoma/secundário , Animais , Estudos de Coortes , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/microbiologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , Microbiota , Metástase Neoplásica , Estadiamento de Neoplasias , New York , Modelos de Riscos Proporcionais , Análise de Sobrevida
6.
Genome Res ; 31(1): 64-74, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33239396

RESUMO

Dental caries, the most common chronic infectious disease worldwide, has a complex etiology involving the interplay of microbial and host factors that are not completely understood. In this study, the oral microbiome and 38 host cytokines and chemokines were analyzed across 23 children with caries and 24 children with healthy dentition. De novo assembly of metagenomic sequencing obtained 527 metagenome-assembled genomes (MAGs), representing 150 bacterial species. Forty-two of these species had no genomes in public repositories, thereby representing novel taxa. These new genomes greatly expanded the known pangenomes of many oral clades, including the enigmatic Saccharibacteria clades G3 and G6, which had distinct functional repertoires compared to other oral Saccharibacteria. Saccharibacteria are understood to be obligate epibionts, which are dependent on host bacteria. These data suggest that the various Saccharibacteria clades may rely on their hosts for highly distinct metabolic requirements, which would have significant evolutionary and ecological implications. Across the study group, Rothia, Neisseria, and Haemophilus spp. were associated with good dental health, whereas Prevotella spp., Streptococcus mutans, and Human herpesvirus 4 (Epstein-Barr virus [EBV]) were more prevalent in children with caries. Finally, 10 of the host immunological markers were significantly elevated in the caries group, and co-occurrence analysis provided an atlas of potential relationships between microbes and host immunological molecules. Overall, this study illustrated the oral microbiome at an unprecedented resolution and contributed several leads for further study that will increase the understanding of caries pathogenesis and guide therapeutic development.


Assuntos
Cárie Dentária , Metagenômica , Microbiota , Bactérias , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Microbiota/genética
7.
Nat Biotechnol ; 39(2): 169-173, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169034

RESUMO

We engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas chromatography-mass spectrometry (GC-MS) data. We then designed workflows to enable the community to store, process, share, annotate, compare and perform molecular networking of GC-MS data within the Global Natural Product Social (GNPS) Molecular Networking analysis platform. MSHub/GNPS performs auto-deconvolution of compound fragmentation patterns via unsupervised non-negative matrix factorization and quantifies the reproducibility of fragmentation patterns across samples.


Assuntos
Algoritmos , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Animais , Anuros , Humanos
8.
mSystems ; 5(3)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576651

RESUMO

Microbial diversity in the cystic fibrosis (CF) lung decreases over decades as pathogenic bacteria such as Pseudomonas aeruginosa take over. The dynamics of the CF microbiome and metabolome over shorter time frames, however, remain poorly studied. Here, we analyze paired microbiome and metabolome data from 594 sputum samples collected over 401 days from six adult CF subjects (subject mean = 179 days) through periods of clinical stability and 11 CF pulmonary exacerbations (CFPE). While microbiome profiles were personalized (permutational multivariate analysis of variance [PERMANOVA] r 2 = 0.79, P < 0.001), we observed significant intraindividual temporal variation that was highest during clinical stability (linear mixed-effects [LME] model, P = 0.002). This included periods where the microbiomes of different subjects became highly similar (UniFrac distance, <0.05). There was a linear increase in the microbiome alpha-diversity and in the log ratio of anaerobes to pathogens with time (n = 14 days) during the development of a CFPE (LME P = 0.0045 and P = 0.029, respectively). Collectively, comparing samples across disease states showed there was a reduction of these two measures during antibiotic treatment (LME P = 0.0096 and P = 0.014, respectively), but the stability data and CFPE data were not significantly different from each other. Metabolome alpha-diversity was higher during CFPE than during stability (LME P = 0.0085), but no consistent metabolite signatures of CFPE across subjects were identified. Virulence-associated metabolites from P. aeruginosa were temporally dynamic but were not associated with any disease state. One subject died during the collection period, enabling a detailed look at changes in the 194 days prior to death. This subject had over 90% Pseudomonas in the microbiome at the beginning of sampling, and that level gradually increased to over 99% prior to death. This study revealed that the CF microbiome and metabolome of some subjects are dynamic through time. Future work is needed to understand what drives these temporal dynamics and if reduction of anaerobes correlate to clinical response to CFPE therapy.IMPORTANCE Subjects with cystic fibrosis battle polymicrobial lung infections throughout their lifetime. Although antibiotic therapy is a principal treatment for CF lung disease, we have little understanding of how antibiotics affect the CF lung microbiome and metabolome and how much the community changes on daily timescales. By analyzing 594 longitudinal CF sputum samples from six adult subjects, we show that the sputum microbiome and metabolome are dynamic. Significant changes occur during times of stability and also through pulmonary exacerbations (CFPEs). Microbiome alpha-diversity increased as a CFPE developed and then decreased during treatment in a manner corresponding to the reduction in the log ratio of anaerobic bacteria to classic pathogens. Levels of metabolites from the pathogen P. aeruginosa were also highly variable through time and were negatively associated with anaerobes. The microbial dynamics observed in this study may have a significant impact on the outcome of antibiotic therapy for CFPEs and overall subject health.

9.
Nat Methods ; 16(12): 1306-1314, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31686038

RESUMO

Integrating multiomics datasets is critical for microbiome research; however, inferring interactions across omics datasets has multiple statistical challenges. We solve this problem by using neural networks (https://github.com/biocore/mmvec) to estimate the conditional probability that each molecule is present given the presence of a specific microorganism. We show with known environmental (desert soil biocrust wetting) and clinical (cystic fibrosis lung) examples, our ability to recover microbe-metabolite relationships, and demonstrate how the method can discover relationships between microbially produced metabolites and inflammatory bowel disease.


Assuntos
Bactérias/metabolismo , Microbiota , Animais , Benchmarking , Cianobactérias/metabolismo , Fibrose Cística/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Camundongos , Redes Neurais de Computação , Pseudomonas aeruginosa/metabolismo
10.
Cell Syst ; 9(6): 600-608.e4, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31629686

RESUMO

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an important class of natural products that contain antibiotics and a variety of other bioactive compounds. The existing methods for discovery of RiPPs by combining genome mining and computational mass spectrometry are limited to discovering specific classes of RiPPs from small datasets, and these methods fail to handle unknown post-translational modifications. Here, we present MetaMiner, a software tool for addressing these challenges that is compatible with large-scale screening platforms for natural product discovery. After searching millions of spectra in the Global Natural Products Social (GNPS) molecular networking infrastructure against just eight genomic and metagenomic datasets, MetaMiner discovered 31 known and seven unknown RiPPs from diverse microbial communities, including human microbiome and lichen microbiome, and microorganisms isolated from the International Space Station.


Assuntos
Biologia Computacional/métodos , Microbiota/genética , Processamento de Proteína Pós-Traducional/genética , Genômica/métodos , Humanos , Peptídeos/química , Ribossomos/genética , Software
11.
Sci Adv ; 4(9): eaau1908, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30263961

RESUMO

Environmental microbial communities are stratified by chemical gradients that shape the structure and function of these systems. Similar chemical gradients exist in the human body, but how they influence these microbial systems is more poorly understood. Understanding these effects can be particularly important for dysbiotic shifts in microbiome structure that are often associated with disease. We show that pH and oxygen strongly partition the microbial community from a diseased human lung into two mutually exclusive communities of pathogens and anaerobes. Antimicrobial treatment disrupted this chemical partitioning, causing complex death, survival, and resistance outcomes that were highly dependent on the individual microorganism and on community stratification. These effects were mathematically modeled, enabling a predictive understanding of this complex polymicrobial system. Harnessing the power of these chemical gradients could be a drug-free method of shaping microbial communities in the human body from undesirable dysbiotic states.


Assuntos
Infecções Bacterianas/microbiologia , Quimiotaxia/fisiologia , Fibrose Cística/microbiologia , Pulmão/microbiologia , Microbiota/fisiologia , Adulto , Antibacterianos/metabolismo , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Quimiotaxia/efeitos dos fármacos , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pulmão/metabolismo , Pulmão/patologia , Redes e Vias Metabólicas , Modelos Teóricos , Escarro/metabolismo , Escarro/microbiologia , Transcriptoma , Fatores de Virulência/metabolismo
12.
ISME J ; 12(11): 2801-2806, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29988064

RESUMO

Gut microbiota composition depends on many factors, although the impact of environmental pollution is largely unknown. We used amplicon sequencing of bacterial 16S rRNA genes to quantify whether anthropogenic radionuclides at Chernobyl (Ukraine) impact the gut microbiome of the bank vole Myodes glareolus. Exposure to elevated levels of environmental radionuclides had no detectable effect on the gut community richness but was associated with an almost two-fold increase in the Firmicutes:Bacteroidetes ratio. Animals inhabiting uncontaminated areas had remarkably similar gut communities irrespective of their proximity to the nuclear power plant. Hence, samples could be classified to high-radiation or low-radiation sites based solely on microbial community with >90% accuracy. Radiation-associated bacteria had distinct inferred functional profiles, including pathways involved in degradation, assimilation and transport of carbohydrates, xenobiotics biodegradation, and DNA repair. Our results suggest that exposure to environmental radionuclides significantly alters vertebrate gut microbiota.


Assuntos
Microbioma Gastrointestinal/efeitos da radiação , Poluentes Radioativos , Animais , Arvicolinae/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Metabolismo dos Carboidratos/genética , Acidente Nuclear de Chernobyl , Firmicutes/genética , Firmicutes/isolamento & purificação , RNA Ribossômico 16S/genética
13.
mSystems ; 3(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29795809

RESUMO

Although much work has linked the human microbiome to specific phenotypes and lifestyle variables, data from different projects have been challenging to integrate and the extent of microbial and molecular diversity in human stool remains unknown. Using standardized protocols from the Earth Microbiome Project and sample contributions from over 10,000 citizen-scientists, together with an open research network, we compare human microbiome specimens primarily from the United States, United Kingdom, and Australia to one another and to environmental samples. Our results show an unexpected range of beta-diversity in human stool microbiomes compared to environmental samples; demonstrate the utility of procedures for removing the effects of overgrowth during room-temperature shipping for revealing phenotype correlations; uncover new molecules and kinds of molecular communities in the human stool metabolome; and examine emergent associations among the microbiome, metabolome, and the diversity of plants that are consumed (rather than relying on reductive categorical variables such as veganism, which have little or no explanatory power). We also demonstrate the utility of the living data resource and cross-cohort comparison to confirm existing associations between the microbiome and psychiatric illness and to reveal the extent of microbiome change within one individual during surgery, providing a paradigm for open microbiome research and education. IMPORTANCE We show that a citizen science, self-selected cohort shipping samples through the mail at room temperature recaptures many known microbiome results from clinically collected cohorts and reveals new ones. Of particular interest is integrating n = 1 study data with the population data, showing that the extent of microbiome change after events such as surgery can exceed differences between distinct environmental biomes, and the effect of diverse plants in the diet, which we confirm with untargeted metabolomics on hundreds of samples.

14.
Annu Rev Pharmacol Toxicol ; 58: 253-270, 2018 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28968189

RESUMO

The human microbiome contains a vast source of genetic and biochemical variation, and its impacts on therapeutic responses are just beginning to be understood. This expanded understanding is especially important because the human microbiome differs far more among different people than does the human genome, and it is also dramatically easier to change. Here, we describe some of the major factors driving differences in the human microbiome among individuals and populations. We then describe some of the many ways in which gut microbes modify the action of specific chemotherapeutic agents, including nonsteroidal anti-inflammatory drugs and cardiac glycosides, and outline the potential of fecal microbiota transplant as a therapeutic. Intriguingly, microbes also alter how hosts respond to therapeutic agents through various pathways acting at distal sites. Finally, we discuss some of the computational and practical issues surrounding use of the microbiome to stratify individuals for drug response, and we envision a future where the microbiome will be modified to increase everyone's potential to benefit from therapy.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Glicosídeos Cardíacos/farmacologia , Glicosídeos Cardíacos/uso terapêutico , Humanos , Transdução de Sinais/efeitos dos fármacos
15.
Cell Host Microbe ; 21(5): 555-556, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28494234

RESUMO

Microbes affect drug responses, but mechanisms remain elusive. Two papers in Cell exploit C. elegans to infer anticancer drug mechanisms. Through high-throughput screens of drug-microbe-host interactions, García-González et al. (2017) and Scott et al. (2017) determine that bacterial metabolism underpins fluoropyrimidine cytotoxicity, providing a paradigm for unraveling bacterial mechanisms in drug metabolism.


Assuntos
Antineoplásicos/farmacologia , Caenorhabditis elegans/microbiologia , Descoberta de Drogas/métodos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Modelos Biológicos , Animais , Bactérias/metabolismo , Ensaios de Triagem em Larga Escala/métodos
16.
mSystems ; 2(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28144630

RESUMO

Advances in sequencing technologies have enabled novel insights into microbial niche differentiation, from analyzing environmental samples to understanding human diseases and informing dietary studies. However, identifying the microbial taxa that differentiate these samples can be challenging. These issues stem from the compositional nature of 16S rRNA gene data (or, more generally, taxon or functional gene data); the changes in the relative abundance of one taxon influence the apparent abundances of the others. Here we acknowledge that inferring properties of individual bacteria is a difficult problem and instead introduce the concept of balances to infer meaningful properties of subcommunities, rather than properties of individual species. We show that balances can yield insights about niche differentiation across multiple microbial environments, including soil environments and lung sputum. These techniques have the potential to reshape how we carry out future ecological analyses aimed at revealing differences in relative taxonomic abundances across different samples. IMPORTANCE By explicitly accounting for the compositional nature of 16S rRNA gene data through the concept of balances, balance trees yield novel biological insights into niche differentiation. The software to perform this analysis is available under an open-source license and can be obtained at https://github.com/biocore/gneiss. Author Video: An author video summary of this article is available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA