Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(5): 3158-3174, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36696670

RESUMO

The first dual-function assay for human serine racemase (hSR), the only bona fide racemase in human biology, is reported. The hSR racemization function is essential for neuronal signaling, as the product, d-serine (d-Ser), is a potent N-methyl d-aspartate (NMDA) coagonist, important for learning and memory, with dysfunctional d-Ser-signaling being observed in some neuronal disorders. The second hSR function is ß-elimination and gives pyruvate; this activity is elevated in colorectal cancer. This new NMR-based assay allows one to monitor both α-proton-exchange chemistry and ß-elimination using only the native l-Ser substrate and hSR and is the most sensitive such assay. The assay judiciously employs segregated dual 13C-labeling and 13C/2H crosstalk, exploiting both the splitting and shielding effects of deuterium. The assay is deployed to screen a 1020-compound library and identifies an indolo-chroman-2,4-dione inhibitor family that displays allosteric site binding behavior (noncompetitive inhibition vs l-Ser substrate; competitive inhibition vs adenosine 5'-triphosphate (ATP)). This assay also reveals important mechanistic information for hSR; namely, that H/D exchange is ∼13-fold faster than racemization, implying that K56 protonates the carbanionic intermediate on the si-face much faster than does S84 on the re-face. Moreover, the 13C NMR peak pattern seen is suggestive of internal return, pointing to K56 as the likely enamine-protonating residue for ß-elimination. The 13C/2H-isotopic crosstalk assay has also been applied to the enzyme tryptophan synthase and reveals a dramatically different partition ratio in this active site (ß-replacement: si-face protonation ∼6:1 vs ß-elimination: si-face protonation ∼1:3.6 for hSR), highlighting the value of this approach for fingerprinting the pyridoxal phosphate (PLP) enzyme mechanism.


Assuntos
Prótons , Fosfato de Piridoxal , Humanos , Racemases e Epimerases , Serina/química
2.
J Org Chem ; 77(18): 7883-90, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22913294

RESUMO

Laureatin, a metabolite of the red algae Laurencia nipponica, has shown potent activity as a mosquito larvicide. The two previously published syntheses of laureatin involved an initial preparation of the 8-membered cyclic ether, followed by formation of the oxetane ring. Our strategy was the reverse, i.e., to utilize an oxetane as the framework to construct the larger ring. During this work, attempted N-bromosuccinimide (NBS)-mediated cyclization of oxetane alcohol 17, prepared from readily accessible 2-methyleneoxetane 12, yielded epoxytetrahydrofuran 19 rather than the expected laureatin core. Further derivatization of 19 yielded trans fused bis-tetrahydrofuran 32. The synthesis of 19 and 32, as well as structural and stereochemical elucidation studies, are described.


Assuntos
Éteres Cíclicos/química , Ciclização , Éteres Cíclicos/síntese química , Estrutura Molecular
3.
Biotechnol Bioeng ; 93(2): 231-7, 2006 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-16315327

RESUMO

Aminonitrotoluenes form rapidly from the reduction of dinitrotoluenes (DNTs) which are priority pollutants and animal carcinogens. For example, 4-amino-2-nitrotoluene (4A2NT) and 2A4NT accumulate from the reduction of 2,4-DNT during its aerobic biodegradation. Here, we show that 2,4-DNT dioxygenase (DDO) from Burkholderia sp. strain DNT oxidizes the aminonitrotoluenes 2A3NT, 2A6NT, 4A3NT, and 5A2NT to 2-amino-3-nitrobenzylalcohol, 2-amino-4-nitro-m-cresol and 3-amino-5-nitro-p-cresol, 4-amino-3-nitrobenzylalcohol and aminonitrocresol, and 2-amino-5-nitro-o-cresol, respectively. 2A5NT and 3A4NT are oxidized to aminonitrocresols and/or aminonitrobenzylalcohols, and 4A2NT is oxidized to aminonitrocresol. Only 2A4NT, a reduced compound derived from 2,4-DNT, was not oxidized by DDO or its three variants. The alpha subunit mutation I204Y resulted in two to fourfold faster oxidization of the aminonitrotoluenes. Though these enzymes are dioxygenases, they acted like monooxygenases by adding a single hydroxyl group, which did not result in the release of nitrite.


Assuntos
Burkholderia/enzimologia , Nitrocompostos/metabolismo , Oxigenases/química , Tolueno/metabolismo , Biodegradação Ambiental , Mutação , Oxirredução , Oxigenases/genética , Oxigenases/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA