Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611893

RESUMO

Metformin (MET), an antidiabetic drug, is emerging as a promising anticancer agent. This study was initiated to investigate the antitumor effects and potential molecular targets of MET in mice bearing solid Ehrlich carcinoma (SEC) as a model of breast cancer (BC) and to explore the potential of zein nanoparticles (ZNs) as a carrier for improving the anticancer effect of MET. ZNs were fabricated through ethanol injection followed by probe sonication method. The optimum ZN formulation (ZN8) was spherical and contained 5 mg zein and 30 mg sodium deoxycholate with a small particle size and high entrapment efficiency percentage and zeta potential. A stability study showed that ZN8 was stable for up to three months. In vitro release profiles proved the sustained effect of ZN8 compared to the MET solution. Treatment of SEC-bearing mice with ZN8 produced a more pronounced anticancer effect which was mediated by upregulation of P53 and miRNA-543 as well as downregulation of NF-κB and miRNA-191-5p gene expression. Furthermore, ZN8 produced a marked elevation in pAMPK and caspase-3 levels as well as a significant decrease in cyclin D1, COX-2, and PGE2 levels. The acquired findings verified the potency of MET-loaded ZNs as a treatment approach for BC.


Assuntos
Carcinoma , Metformina , MicroRNAs , Nanopartículas , Zeína , Animais , Camundongos , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP , Polímeros
2.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37895850

RESUMO

Onion peels are often discarded, representing an unlimited amount of food by-products; however, they are a valuable source of bioactive phenolics. Thus, we utilized UPLC-MS/MS to analyze the metabolomic profiles of red (RO) and yellow (YO) onion peel extracts. The cytotoxic (SRB assay), anti-inflammatory (Griess assay), and antimicrobial (sensitivity test, MIC, antibiofilm, and SP-SDS tests) properties were assessed in vitro. Additionally, histological analysis, immunohistochemistry, and ELISA tests were conducted to investigate the healing potential in excisional skin wound injury and Candida albicans infection in vivo. RO extract demonstrated antibacterial activity, limited skin infection with C. albicans, and improved the skin's appearance due to the abundance of quercetin and anthocyanin derivatives. Both extracts reduced lipopolysaccharide-induced nitric oxide release in vitro and showed a negligible cytotoxic effect on MCF-7 and HT29 cells. When extracts were tested in vivo for their ability to promote tissue regeneration, it was found that YO peel extract had the greatest impact. Further biochemical analysis revealed that YO extract suppressed NLRP3/caspase-1 signaling and decreased inflammatory cytokines. Furthermore, YO extract decreased Notch-1 levels and boosted VEGF-mediated angiogenesis. Our findings imply that onion peel extract can effectively treat wounds by reducing microbial infection, reducing inflammation, and promoting tissue regeneration.

3.
AAPS PharmSciTech ; 24(7): 195, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770750

RESUMO

The consumption of non-steroidal anti-inflammatory drugs (NSAIDs) have increased lately around the world, as they are considered essential and popular drugs for effective reduction of pain and inflammation. They have analgesic, antipyretic, and anti-inflammatory activities; also, it was reported recently that they protect against various critical disorders like heart attacks and cancer. However, oral use of NSAIDs may cause several pulmonary, gastrointestinal, hepatic, cardiovascular, cerebral, and renal complications. Therefore, topical NSAIDs were recommended as a substitute to oral NSAIDs for the treatment of inflammation and pain. Still, the skin permeation of NSAIDs is considered a challenge, as the skin have an effective barrier function. Therefore, this review investigates various advanced vesicular nanocarriers and their applications through the skin, to augment the topical delivery of NSAIDs through stratum corneum over the conventional systems, enhance their effectiveness, and reduce the unwanted side effects. These innovative systems can manage bioavailability, solubility, stability, safety, and efficacy issues present in conventional systems.

4.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36678625

RESUMO

The foremost target of the current work was to formulate and optimize a novel bergamot essential oil (BEO) loaded nano-phytosomes (NPs) and then combine it with spironolactone (SP) in order to clinically compare the efficiency of both formulations against acne vulgaris. The BEO-loaded NPs formulations were fabricated by the thin-film hydration and optimized by 32 factorial design. NPs' assessments were conducted by measuring entrapment efficiency percent (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). In addition, the selected BEO-NPs formulation was further combined with SP and then examined for morphology employing transmission electron microscopy and three months storage stability. Both BEO-loaded NPs selected formula and its combination with SP (BEO-NPs-SP) were investigated clinically for their effect against acne vulgaris after an appropriate in silico study. The optimum BEO-NPs-SP showed PS of 300.40 ± 22.56 nm, PDI of 0.571 ± 0.16, EE% of 87.89 ± 4.14%, and an acceptable ZP value of -29.7 ± 1.54 mV. Molecular modeling simulations showed the beneficial role of BEO constituents as supportive/connecting platforms for favored anchoring of SP on the Phosphatidylcholine (PC) interface. Clinical studies revealed significant improvement in the therapeutic response of BEO-loaded NPs that were combined with SP over BEO-NPs alone. In conclusion, the results proved the ability to utilize NPs as a successful nanovesicle for topical BEO delivery as well as the superior synergistic effect when combined with SP in combating acne vulgaris.

5.
Drug Deliv ; 29(1): 427-439, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35098843

RESUMO

Cranberry extract (CBE) is a major source of the antioxidant polyphenolics but suffers from limited bioavailability. The goal of this research was to encapsulate the nutraceutical (CBE), into bile salt augmented liposomes (BSALs) as a promising oral delivery system to potentiate its hepatoprotective impact against dimethylnitrosamine (DMN) induced liver injury in rats. The inclusion of bile salt in the liposomal structure can enhance their stability within the gastrointestinal tract and promote CBE permeability. CBE loaded BSALs formulations were fabricated utilizing a (23) factorial design to explore the impact of phospholipid type (X1), phospholipid amount (X2), and sodium glycocholate (SGC) amount (X3) on BSALs properties, namely; entrapment efficiency percent, (EE%); vesicle size, (VS); polydispersity index; (PDI); zeta potential, (ZP); and release efficiency percent, (RE%). The optimum formulation (F1) exhibited spherical vesicles with EE% of 71.27 ± 0.32%, VS; 148.60 ± 6.46 nm, PDI; 0.38 ± 0.02, ZP; -18.27 ± 0.67 mV and RE%; 61.96 ± 1.07%. Compared to CBE solution, F1 had attenuated DMN-induced hepatic injury, as evidenced by the significant decrease in serum level of ALT, AST, ALP, MDA, and elevation of GSH level, as well as SOD and GPX activities. Furthermore, F1 exhibited an anti-inflammatory character by suppressing TNF-α, MCP-1, and IL-6, as well as downregulation of VEGF-C, STAT-3, and IFN-γ mRNA levels. This study verified that when CBE was integrated into BSALs, F1, its hepatoprotective effect was significantly potentiated to protect the liver against DMN-induced damage. Therefore, F1 could be deliberated as an antioxidant, antiproliferative, and antifibrotic therapy to slow down the progression of hepatic damage.


Assuntos
Ácidos e Sais Biliares/química , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Lipossomos/química , Extratos Vegetais/farmacologia , Vaccinium macrocarpon , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Química Farmacêutica , Dimetilnitrosamina/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Portadores de Fármacos , Liberação Controlada de Fármacos , Mediadores da Inflamação/metabolismo , Testes de Função Hepática , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores CCR2/efeitos dos fármacos , Fator de Transcrição STAT3/efeitos dos fármacos , Propriedades de Superfície , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA