Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 110(1): 412-421, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931777

RESUMO

Pregnancy-related hormones (PRH) have emerged as key regulators of hepatic cytochrome P450 (CYP) enzyme expression and function. The impact of PRH on protein levels of CYP3A4 and other key CYP enzymes, and the metabolism of nifedipine (a CYP3A4 substrate commonly prescribed during pregnancy), was evaluated in primary human hepatocytes. Sandwich-cultured human hepatocytes (SCHH) from female donors were exposed to PRH (estradiol, estriol, estetrol, progesterone, and cortisol), individually or in combination as a cocktail. Absolute protein concentrations of twelve CYP isoforms in SCHH membrane fractions were quantified by nanoLC-MS/MS, and metabolism of nifedipine to dehydronifedipine in SCHH was evaluated. PRH significantly increased CYP3A4 protein concentrations and nifedipine metabolism to dehydronifedipine in a concentration-dependent manner. CYP3A4 mRNA levels in hepatocyte-derived exosomes positively correlated with CYP3A4 protein levels and dehydronifedipine formation in SCHH. PRH also increased CYP2B6, CYP2C8 and CYP2A6 levels. Our findings demonstrate that PRH increase nifedipine metabolism in SCHH by inducing CYP3A4 expression and alter expression of other key CYP proteins in an isoform-specific manner, and suggest that hepatocyte-derived exosomes warrant further investigation as biomarkers of hepatic CYP3A4 metabolism. Together, these results offer mechanistic insight into the increases in nifedipine metabolism and clearance observed in pregnant women.


Assuntos
Citocromo P-450 CYP3A , Nifedipino , Citocromo P-450 CYP3A/genética , Feminino , Hepatócitos , Humanos , Gravidez , Progesterona , Espectrometria de Massas em Tandem
2.
Toxicol In Vitro ; 70: 105010, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33022361

RESUMO

Primary mouse hepatocytes isolated from genetically defined and/or diverse lines and disease models are a valuable resource for studying the impact of genetic and environmental factors on drug response and disease. However, standard monolayer cultures result in a rapid decline in mouse hepatocyte viability and functionality. Therefore, we evaluated 3D spheroid methodology for long-term culture of primary mouse hepatocytes, initially to support investigations of drug-induced liver injury (DILI). Primary hepatocytes isolated from male and female C57BL/6J mice were used to generate spheroids by spontaneous self-aggregation in ultra-low attachment plates. Spheroids with well-defined perimeters were observed within 5 days after seeding and retained morphology, ATP, and albumin levels for an additional 2 weeks in culture. Global microarray profiling and quantitative targeted proteomics assessing 10 important drug metabolizing enzymes and transporters demonstrated maintenance of mRNA and protein levels in spheroids over time. Activities for 5 major P450 enzymes were also stable and comparable to activities previously reported for human hepatocyte spheroids. Time- and concentration-dependent decreases in ATP and albumin were observed in response to the DILI-causing drugs acetaminophen, fialuridine, AMG-009, and tolvaptan. Collectively, our results demonstrate successful long-term culture of mouse hepatocytes as spheroids and their utility to support investigations of DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Modelos Biológicos , Acetaminofen/toxicidade , Trifosfato de Adenosina/metabolismo , Albuminas/metabolismo , Animais , Arabinofuranosiluracila/análogos & derivados , Arabinofuranosiluracila/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Hepatócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fenilacetatos/toxicidade , Proteômica , Esferoides Celulares/metabolismo , Sulfonamidas/toxicidade , Tolvaptan/toxicidade , Transcriptoma
3.
Toxicol Sci ; 172(2): 265-278, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501888

RESUMO

Idelalisib is a phosphatidylinositol 3-kinase inhibitor highly selective for the delta isoform that has shown good efficacy in treating chronic lymphocytic leukemia and follicular lymphoma. In clinical trials, however, idelalisib was associated with rare, but potentially serious liver and lung toxicities. In this study, we used the Collaborative Cross (CC) mouse population to identify genetic factors associated with the drug response that may inform risk management strategies for idelalisib in humans. Eight male mice (4 matched pairs) from 50 CC lines were treated once daily for 14 days by oral gavage with either vehicle or idelalisib at a dose selected to achieve clinically relevant peak plasma concentrations (150 mg/kg/day). The drug was well tolerated across all CC lines, and there were no observations of overt liver injury. Differences across CC lines were seen in drug concentration in plasma samples collected at the approximate Tmax on study Days 1, 7, and 14. There were also small but statistically significant treatment-induced alterations in plasma total bile acids and microRNA-122, and these may indicate early hepatocellular stress required for immune-mediated hepatotoxicity in humans. Idelalisib treatment further induced significant elevations in the total cell count of terminal bronchoalveolar lavage fluid, which may be analogous to pneumonitis observed in the clinic. Genetic mapping identified loci associated with interim plasma idelalisib concentration and the other 3 treatment-related endpoints. Thirteen priority candidate quantitative trait genes identified in CC mice may now guide interrogation of risk factors for adverse drug responses associated with idelalisib in humans.


Assuntos
Antineoplásicos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/genética , Lesão Pulmonar/genética , Fosfatidilinositol 3-Quinase/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Locos de Características Quantitativas/efeitos dos fármacos , Animais , Antineoplásicos/sangue , Biomarcadores/sangue , Líquido da Lavagem Broncoalveolar/citologia , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Mapeamento Cromossômico , Relação Dose-Resposta a Droga , Testes de Função Hepática , Lesão Pulmonar/sangue , Lesão Pulmonar/induzido quimicamente , Camundongos Endogâmicos , MicroRNAs/sangue , Estresse Oxidativo , Fosfatidilinositol 3-Quinase/sangue , Polimorfismo de Nucleotídeo Único , Inibidores de Proteínas Quinases/sangue , Purinas , Quinazolinonas , Fatores de Risco , Especificidade da Espécie , Toxicogenética
4.
PLoS One ; 14(1): e0208958, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30601836

RESUMO

Hepatic fibrosis develops from a series of complex interactions among resident and recruited cells making it a challenge to replicate using standard in vitro approaches. While studies have demonstrated the importance of macrophages in fibrogenesis, the role of Kupffer cells (KCs) in modulating the initial response remains elusive. Previous work demonstrated utility of 3D bioprinted liver to recapitulate basic fibrogenic features following treatment with fibrosis-associated agents. In the present study, culture conditions were modified to recapitulate a gradual accumulation of collagen within the tissues over an extended exposure timeframe. Under these conditions, KCs were added to the model to examine their impact on the injury/fibrogenic response following cytokine and drug stimuli. A 28-day exposure to 10 ng/mL TGF-ß1 and 0.209 µM methotrexate (MTX) resulted in sustained LDH release which was attenuated when KCs were incorporated in the model. Assessment of miR-122 confirmed early hepatocyte injury in response to TGF-ß1 that appeared delayed in the presence of KCs, whereas MTX-induced increases in miR-122 were observed when KCs were incorporated in the model. Although the collagen responses were mild under the conditions tested to mimic early fibrotic injury, a global reduction in cytokines was observed in the KC-modified tissue model following treatment. Furthermore, gene expression profiling suggests KCs have a significant impact on baseline tissue function over time and an important modulatory role dependent on the context of injury. Although the number of differentially expressed genes across treatments was comparable, pathway enrichment suggests distinct, KC- and time-dependent changes in the transcriptome for each agent. As such, the incorporation of KCs and impact on baseline tissue homeostasis may be important in recapitulating temporal dynamics of the fibrogenic response to different agents.


Assuntos
Células de Kupffer/metabolismo , Fígado/metabolismo , Metotrexato/toxicidade , Fator de Crescimento Transformador beta1/metabolismo , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Células de Kupffer/efeitos dos fármacos , Fígado/efeitos dos fármacos , Cirrose Hepática/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
5.
Toxicol Sci ; 167(2): 458-467, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30289550

RESUMO

TAK-875 (fasiglifam), a GPR40 agonist in development for the treatment of type 2 diabetes (T2D), was voluntarily terminated in Phase III trials due to adverse liver effects. The potential mechanisms of TAK-875 toxicity were explored by combining in vitro experiments with quantitative systems toxicology (QST) using DILIsym, a mathematical representation of drug-induced liver injury. In vitro assays revealed that bile acid transporters were inhibited by both TAK-875 and its metabolite, TAK-875-Glu. Experimental data indicated that human bile salt export pump (BSEP) inhibition by TAK-875 was mixed whereas sodium taurocholate co-transporting polypeptide (NTCP) inhibition by TAK-875 was competitive. Furthermore, experimental data demonstrated that both TAK-875 and TAK-875-Glu inhibit mitochondrial electron transport chain (ETC) enzymes. These mechanistic data were combined with a physiologically based pharmacokinetic (PBPK) model constructed within DILIsym to estimate liver exposure of TAK-875 and TAK-875-Glu. In a simulated population (SimPops) constructed to reflect T2D patients, 16/245 (6.5%) simulated individuals developed alanine aminotransferase (ALT) elevations, an incidence similar to that observed with 200 mg daily dosing in clinical trials. Determining the mode of bile acid transporter inhibition (Ki) was critical to accurate predictions. In addition, simulations conducted on a sensitive subset of individuals (SimCohorts) revealed that when either BSEP or ETC inhibition was inactive, ALT elevations were not predicted to occur, suggesting that the two mechanisms operate synergistically to produce the observed clinical response. These results demonstrate how utilizing QST methods to interpret in vitro experimental results can lead to an improved understanding of the clinically relevant mechanisms underlying drug-induced toxicity.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Benzofuranos/toxicidade , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Sulfonas/toxicidade , Benzofuranos/farmacocinética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Simulação por Computador , Humanos , Fígado/metabolismo , Mitocôndrias/metabolismo , Sulfonas/farmacocinética
6.
Toxicol Sci ; 163(1): 92-100, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29385596

RESUMO

Recent evidence supports that alterations in hepatocyte-derived exosomes (HDE) may play a role in the pathogenesis of drug-induced liver injury (DILI). HDE-based biomarkers also hold promise to improve the sensitivity of existing in vitro assays for predicting DILI liability. Primary human hepatocytes (PHH) provide a physiologically relevant in vitro model to explore the mechanistic and biomarker potential of HDE in DILI. However, optimal methods to study exosomes in this culture system have not been defined. Here we use HepG2 and HepaRG cells along with PHH to optimize methods for in vitro HDE research. We compared the quantity and purity of HDE enriched from HepG2 cell culture medium by 3 widely used methods: ultracentrifugation (UC), OptiPrep density gradient ultracentrifugation (ODG), and ExoQuick (EQ)-a commercially available exosome precipitation reagent. Although EQ resulted in the highest number of particles, UC resulted in more exosomes as indicated by the relative abundance of exosomal CD63 to cellular prohibitin-1 as well as the comparative absence of contaminating extravesicular material. To determine culture conditions that best supported exosome release, we also assessed the effect of Matrigel matrix overlay at concentrations ranging from 0 to 0.25 mg/ml in HepaRG cells and compared exosome release from fresh and cryopreserved PHH from same donor. Sandwich culture did not impair exosome release, and freshly prepared PHH yielded a higher number of HDE overall. Taken together, our data support the use of UC-based enrichment from fresh preparations of sandwich-cultured PHH for future studies of HDE in DILI.


Assuntos
Biomarcadores/análise , Doença Hepática Induzida por Substâncias e Drogas , Técnicas de Cocultura/métodos , Exossomos/ultraestrutura , Hepatócitos/citologia , Ultracentrifugação/métodos , Adulto , Colágeno/química , Criopreservação , Meios de Cultura/química , Combinação de Medicamentos , Exossomos/metabolismo , Feminino , Células Hep G2 , Humanos , Laminina/química , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Proibitinas , Proteoglicanas/química , Proteínas Repressoras/análise , Tetraspanina 30/análise
7.
Toxicol Sci ; 161(2): 401-411, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069498

RESUMO

GGF2 is a recombinant human neuregulin-1ß in development for chronic heart failure. Phase 1 clinical trials of GGF2 were put on hold when transient elevations in serum aminotransferases and total bilirubin were observed in 2 of 43 subjects who received single doses of GGF2 at 1.5 or 0.378 mg/kg. However, aminotransferase elevations were modest and not typical of liver injury sufficient to result in elevated serum bilirubin. Cynomolgus monkeys administered a single 15 mg/kg dose of GGF2 had similar transient elevations in serum aminotransferases and bilirubin as well as transient elevations in serum bile acids. However, no hepatocellular necrosis was observed in liver biopsies obtained during peak elevations. When sandwich-cultured human hepatocytes were treated with GGF2 for up to 72 h at concentrations approximately 0.8-fold average plasma Cmax for the 0.378 mg/kg dose, no cytotoxicity was observed. Gene expression profiling identified approximately 50% reductions in mRNAs coding for bilirubin transporters and bile acid conjugating enzymes, as well as changes in expression of additional genes mimicking the interleukin-6-mediated acute phase response. Similar gene expression changes were observed in GGF2-treated HepG2 cells and primary monkey hepatocytes. Additional studies conducted in sandwich-cultured human hepatocytes revealed a transient and GGF2 concentration-dependent decrease in hepatocyte bile acid content and biliary clearance of taurocholate without affecting biliary taurocholate efflux. Taken together, these data suggest that GGF2 does not cause significant hepatocellular death, but transiently modifies hepatic handling of bilirubin and bile acids, effects that may account for the elevations in serum bilirubin observed in the clinical trial subjects.


Assuntos
Ácidos e Sais Biliares/sangue , Ductos Biliares/efeitos dos fármacos , Bilirrubina/sangue , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Neuregulina-1/efeitos adversos , Animais , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Ensaios Clínicos Fase I como Assunto , Citocromo P-450 CYP3A/genética , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Macaca fascicularis , Masculino , Cultura Primária de Células , Toxicogenética , Transcriptoma/efeitos dos fármacos
8.
Food Chem Toxicol ; 76: 19-26, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25446466

RESUMO

Consumer use of herbal and dietary supplements has recently grown in the United States and, with increased use, reports of rare adverse reactions have emerged. One such supplement is green tea extract, containing the polyphenol epigallocatechin gallate (EGCG), which has been shown to be hepatotoxic at high doses in animal models. The Drug-Induced Liver Injury Network has identified multiple patients who have experienced liver injury ascribed to green tea extract consumption and the relationship to dose has not been straightforward, indicating that differences in sensitivity may contribute to the adverse response in susceptible people. The Diversity Outbred (DO), a genetically heterogeneous mouse population, provides a potential platform for study of interindividual toxicity responses to green tea extract. Within the DO population, an equal exposure to EGCG (50 mg/kg; daily for three days) was found to be tolerated in the majority of mice; however, a small fraction of the animals (16%; 43/272) exhibited severe hepatotoxicity (10-86.8% liver necrosis) that is analogous to the clinical cases. The data indicate that the DO mice may provide a platform for informing risk of rare, adverse reactions that may occur in consumer populations upon ingestion of concentrated herbal products.


Assuntos
Antioxidantes/efeitos adversos , Catequina/análogos & derivados , Doença Hepática Induzida por Substâncias e Drogas/genética , Fígado/efeitos dos fármacos , Polifenóis/efeitos adversos , Animais , Antioxidantes/administração & dosagem , Catequina/administração & dosagem , Catequina/efeitos adversos , Mapeamento Cromossômico , Relação Dose-Resposta a Droga , Técnicas de Genotipagem , Marcação In Situ das Extremidades Cortadas , Fígado/metabolismo , Masculino , Camundongos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Polifenóis/administração & dosagem , Locos de Características Quantitativas , Chá/química
9.
Endocrinology ; 149(12): 6006-17, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18755801

RESUMO

The composition of the beta-cell exocytic machinery is very similar to that of neuronal synapses, and the developmental pathway of beta-cells and neurons substantially overlap. beta-Cells secrete gamma-aminobutyric acid and express proteins that, in the brain, are specific markers of inhibitory synapses. Recently, neuronal coculture experiments have identified three families of synaptic cell-surface molecules (neurexins, neuroligins, and SynCAM) that drive synapse formation in vitro and that control the differentiation of nascent synapses into either excitatory or inhibitory fully mature nerve terminals. The inhibitory synapse-like character of the beta-cells led us to hypothesize that members of these families of synapse-inducing adhesion molecules would be expressed in beta-cells and that the pattern of expression would resemble that associated with neuronal inhibitory synaptogenesis. Here, we describe beta-cell expression of the neuroligins, neurexins, and SynCAM, and show that neuroligin expression affects insulin secretion in INS-1 beta-cells and rat islet cells. Our findings demonstrate that neuroligins and neurexins are expressed outside the central nervous system and help confer an inhibitory synaptic-like phenotype onto the beta-cell surface. Analogous to their role in synaptic neurotransmission, neurexin-neuroligin interactions may play a role in the formation of the submembrane insulin secretory apparatus.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Processamento Alternativo , Animais , Western Blotting , Encéfalo/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular Tumoral , Glicoproteínas/genética , Glicoproteínas/metabolismo , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Humanos , Secreção de Insulina , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Interferência de RNA , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA