Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Children (Basel) ; 11(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38671709

RESUMO

Diffuse midline gliomas are among the deadliest human cancers and have had little progress in treatment in the last 50 years. Cell cultures of these tumors have been developed recently, but the degree to which such cultures retain the characteristics of the source tumors is unknown. DNA methylation profiling offers a powerful tool to look at genome-wide epigenetic changes that are biologically meaningful and can help assess the similarity of cultured tumor cells to their in vivo progenitors. Paraffinized diagnostic tissue from three diffuse intrinsic pontine gliomas with H3 K27M mutations was compared with subsequent passages of neurosphere cell cultures from those tumors. Each cell line was passaged 3-4 times and analyzed with DNA methylation arrays and standard algorithms that provided a comparison of diagnostic classification and cluster analysis. All samples tested maintained high classifier scores and clustered within the reference group of H3 K27M-mutant diffuse midline gliomas. There was a gain of 1q in all cell lines, with two cell lines initially manifesting the gain of 1q only during culture. In vitro cell cultures of H3 K27M-mutant gliomas maintain high degrees of similarity in DNA methylation profiles to their source tumor, confirming their fidelity even with some chromosomal changes.

2.
Cancers (Basel) ; 14(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291862

RESUMO

Cholangiocarcinoma (CCA) is a highly lethal cancer arising from the biliary tract epithelium. The cancer biology of this neoplasm is not well understood. To date, only a few CCA cell lines have been reported, which were mostly developed from Asian patients. In this study, we report and characterize a new intrahepatic CCA cell line, LIV27, derived from a surgically resected tumor in a 67-year-old Caucasian woman with primary sclerosing cholangitis (PSC). LIV27 cells grow well in collagen-coated flasks or plates with a doubling time of 57.8 h at passage 14. LIV27 cells have high tumorigenicity in nude mice and stain positive for CK7 and CK19, markers that differentiate CCA from hepatocellular carcinoma. Karyotype analysis showed that LIV27 is aneuploid. We established a single-locus short tandem repeat profile for the LIV27 cell line. This newly established cell line will be a useful model for studying the molecular pathogenesis of, and developing novel therapies for, cholangiocarcinoma.

3.
Cancers (Basel) ; 13(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34771445

RESUMO

Transforming growth factor-ß (TGF-ß) activates hepatic stellate cells (HSCs), which drive liver fibrosis via the production and deposition of extracellular matrix (ECM). We aimed to elucidate the mechanistic role of sulfatase-2 (SULF2) in liver fibrosis. To this end, we induced liver fibrosis in wild-type (WT) and SULF2 knockout (Sulf2-KO) mice (6-8 weeks-old) via bile duct ligation (BDL), intraperitoneal injection of carbon tetrachloride (CCl4) or thioacetamide (TAA). The levels of fibrosis in the liver sections were assessed via Sirius red and Masson's trichrome staining, immunohistochemistry and immunoblotting for α-smooth muscle actin (α-SMA) and hydroxyproline. To evaluate the interaction between TGF-ß and SULF2, we transfected human HSCs with scrambled control shRNA and shRNA constructs targeting SULF2 and measured α-SMA expression following treatment with TGF-ß1 ligand. We show here that knockout of SULF2 significantly decreases collagen content, as well as bands of bridging fibrosis, as demonstrated by Sirius red, Masson's trichrome and α-SMA staining after BDL, CCl4 and TAA injection in Sulf2-KO versus WT mice. In all three models of liver fibrosis, we observed significantly lower levels of hydroxyproline in the Sulf2-KO mice compared to the WT mice. HSCs with reduced levels of SULF2 failed to significantly express α-SMA and collagen type I following treatment with TGF-ß1. Furthermore, SULF2 co-localizes with TGFBR3 and the in vitro knockdown of SULF2 in HSCs decreases the release of TGF-ß1 from TGFBR3. Together, these data suggest that SULF2 regulates liver fibrosis via the TGF-ß signaling pathway. Pharmacologic inhibition of SULF2 may represent a novel therapeutic approach to improve liver fibrosis.

4.
Hepatol Commun ; 5(8): 1448-1459, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34430788

RESUMO

Cholangiocarcinoma (CCA) has poor prognosis due to late-stage, symptomatic presentation. Altered DNA methylation markers may improve diagnosis of CCA. Reduced-representation bisulfite sequencing was performed on DNA extracted from frozen CCA tissues and matched to adjacent benign biliary epithelia or liver parenchyma. Methylated DNA markers (MDMs) identified from sequenced differentially methylated regions were selected for biological validation on DNA from independent formalin-fixed, paraffin-embedded CCA tumors and adjacent hepatobiliary control tissues using methylation-specific polymerase chain reaction. Selected MDMs were then blindly assayed on DNA extracted from independent archival biliary brushing specimens, including 12 perihilar cholangiocarcinoma, 4 distal cholangiocarcinoma cases, and 18 controls. Next, MDMs were blindly assayed on plasma DNA from patients with extrahepatic CCA (eCCA), including 54 perihilar CCA and 5 distal CCA cases and 95 healthy and 22 primary sclerosing cholangitis controls, balanced for age and sex. From more than 3,600 MDMs discovered in frozen tissues, 39 were tested in independent samples. In the clinical pilot of 16 MDMs on cytology brushings, methylated EMX1 (empty spiracles homeobox 1) had an area under the curve (AUC) of 0.98 (95% confidence interval [CI], 0.95-1.0). In the clinical pilot on plasma, a cross-validated recursive partitioning tree prediction model from nine MDMs was accurate for de novo eCCA (AUC, 0.88 [0.81-0.95]) but not for primary sclerosing cholangitis-associated eCCA (AUC, 0.54 [0.35-0.73]). Conclusion: Next-generation DNA sequencing yielded highly discriminant methylation markers for CCA. Confirmation of these findings in independent tissues, cytology brushings, and plasma supports further development of DNA methylation to augment diagnosis of CCA.

5.
J Biol Chem ; 295(9): 2698-2712, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31988246

RESUMO

The expression of the extracellular sulfatase SULF2 has been associated with increased hepatocellular carcinoma (HCC) growth and poor patient survival. However, the molecular mechanisms underlying SULF2-associated tumor growth remain unclear. To address this gap, here we developed a transgenic mouse overexpressing Sulf2 in hepatocytes under the control of the transthyretin promoter. In this model, Sulf2 overexpression potentiated diethylnitrosamine-induced HCC. Further analysis indicated that the transcription factor GLI family zinc finger 1 (GLI1) mediates Sulf2 expression during HCC development. A cross of the Sulf2-overexpressing with Gli1-knockout mice revealed that Gli1 inactivation impairs SULF2-induced HCC. Transcriptomic analysis revealed that Sulf2 overexpression is associated with signal transducer and activator of transcription 3 (STAT3)-specific gene signatures. Interestingly, the Gli1 knockout abrogated SULF2-mediated induction of several STAT3 target genes, including suppressor of cytokine signaling 2/3 (Socs2/3); Pim-1 proto-oncogene, Ser/Thr kinase (Pim1); and Fms-related tyrosine kinase 4 (Flt4). Human orthologs were similarly regulated by SULF2, dependent on intact GLI1 and STAT3 functions in HCC cells. SULF2 overexpression promoted a GLI1-STAT3 interaction and increased GLI1 and STAT3 enrichment at the promoters of their target genes. Interestingly, the SULF2 overexpression resulted in GLI1 enrichment at select STAT3 consensus sites, and vice versa. siRNA-mediated STAT3 or GLI1 knockdown reduced promoter binding of GLI1 and STAT3, respectively. Finally, chromatin-capture PCR confirmed long-range co-regulation of SOCS2 and FLT3 through changes in promoter conformation. These findings define a mechanism whereby SULF2 drives HCC by stimulating formation of a GLI1-STAT3 transcriptional complex.


Assuntos
Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/etiologia , Fator de Transcrição STAT3/metabolismo , Sulfatases/fisiologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Carcinogênese , Humanos , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Ligação Proteica , Proto-Oncogene Mas , Fatores de Transcrição STAT , Sulfatases/metabolismo , Transativadores
6.
Hepatol Commun ; 3(11): 1520-1543, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31701075

RESUMO

Autophagy has been shown to be a key cellular event controlling tumor growth in different neoplasms including hepatocellular carcinoma (HCC). Although this biological role of autophagy has been clearly established, the mechanism underlying its regulation remains elusive. Here, we demonstrate a role of sulfatase 2 (SULF2), a 6-O-endosulfatase modulating various growth factors and cytokine-related signaling pathways controlling tumor cell proliferation and survival, in the regulation of autophagy in HCC cells. SULF2 increased autophagosome formation, shown by increased LC3B-II protein and green fluorescent protein-LC3 puncta. Increased fusion between autophagosomes and lysosomes/lysosomal enzymes, higher expression of lysosomal membrane protein, and an increase in autolysosomes were also shown by western blot, immunofluorescence, and electron microscopy of SULF2-expressing cells, indicating enhanced autophagic flux. In contrast, RNA-interference silencing of SULF2 in Huh7 cells induced lysosomal membrane permeabilization with diffuse cytosolic staining of cathepsin D and punctate staining of galectin-3. Analysis of the mechanism showed that inhibition of lysosome-associated protein transmembrane 4 beta (LAPTM4B), a gene induced by SULF2, resulted in decreased autophagosome formation, decreased fusion between autophagosomes and lysosomes, and increased lysosomal membrane permeabilization. Interestingly, down-regulation of LAPTM4B also phenocopies the knockdown of SULF2, significantly reducing cell viability and colony formation. Conclusion: Our results demonstrate a role for SULF2 in the regulation of autophagic flux that is mediated through LAPTM4B induction in HCC cells, and provide a foundation for future translational efforts targeting autophagy in liver malignancies.

7.
Cancer Epidemiol Biomarkers Prev ; 28(3): 531-538, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30464023

RESUMO

BACKGROUND: The GALAD score is a serum biomarker-based model that predicts the probability of having hepatocellular carcinoma (HCC) in patients with chronic liver disease. We aimed to assess the performance of the GALAD score in comparison with liver ultrasound for detection of HCC. METHODS: A single-center cohort of 111 HCC patients and 180 controls with cirrhosis or chronic hepatitis B and a multicenter cohort of 233 early HCC and 412 cirrhosis patients from the Early Detection Research Network (EDRN) phase II HCC Study were analyzed. RESULTS: The area under the ROC curve (AUC) of the GALAD score for HCC detection was 0.95 [95% confidence interval (CI), 0.93-97], which was higher than the AUC of ultrasound (0.82, P <0.01). At a cutoff of -0.76, the GALAD score had a sensitivity of 91% and a specificity of 85% for HCC detection. The AUC of the GALAD score for early-stage HCC detection remained high at 0.92 (95% CI, 0.88-0.96; cutoff -1.18, sensitivity 92%, specificity 79%). The AUC of the GALAD score for HCC detection was 0.88 (95% CI, 0.85-0.91) in the EDRN cohort. The combination of GALAD and ultrasound (GALADUS score) further improved the performance of the GALAD score in the single-center cohort, achieving an AUC of 0.98 (95% CI, 0.96-0.99; cutoff -0.18, sensitivity 95%, specificity 91%). CONCLUSIONS: The performance of the GALAD score was superior to ultrasound for HCC detection. The GALADUS score further enhanced the performance of the GALAD score. IMPACT: The GALAD score was validated in the United States.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/diagnóstico , Detecção Precoce de Câncer/métodos , Neoplasias Hepáticas/diagnóstico , Ultrassonografia/métodos , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/diagnóstico por imagem , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Prognóstico , Curva ROC
8.
Transl Oncol ; 12(1): 143-153, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30316146

RESUMO

PURPOSE: We investigated the antitumor effect of the casein kinase II (CK2) inhibitor CX-4945 on cholangiocarcinoma (CCA). METHODS: We assessed the effect of CX-4945 alone and/or in combination with gemcitabine and cisplatin on cell viability, colony formation, and apoptosis of CCA cell lines and on in vivo growth of HuCCT1 xenografts. RESULTS: CX-4945 dose-dependently decreased viability of HuCCT1, EGI-1, and Liv27 and decreased phospho-AKT/total AKT and phospho-PTEN/total PTEN ratios. CX-4945 significantly increased caspase 3/7 activity in a dose- and time-dependent manner. CX-4945 significantly enhanced the effect of gemcitabine or cisplatin on HuCCT1, EGI-1, and Liv27 cells and inhibited the phosphorylation of DNA repairing enzymes XRCC1 and MDC1. Further, CX-4945 alone significantly inhibited growth of HuCCT1 mouse xenograft tumors. Combining CX-4945 with gemcitabine and cisplatin was more potent than CX-4945 alone or gemcitabine/cisplatin. The effect of CX-4945 on cell proliferation, apoptosis, the PI3K/AKT pathway, and DNA repair was confirmed in the mouse xenografts. CONCLUSION: CX-4945 has an antiproliferative effect on CCA and enhances the effect of gemcitabine and cisplatin through its inhibitory effect on the PI3K/AKT pathway and DNA repair.

9.
Proteomics Clin Appl ; 11(9-10)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28561948

RESUMO

PURPOSE: Cholangiocarcinoma (CCA) is a malignancy of the bile ducts. The purpose of this discovery study was to identify effective serum markers for surveillance of cholangiocarcinoma. EXPERIMENTAL DESIGN: Using a glycomic method, patients with CCA were determined to have increased levels of alpha-1,3 and alpha-1,6 linked fucosylated glycan. Proteomic analysis of the serum fucosylated proteome identified proteins such as alpha-2-macroglobulin, kininogen, hemopexin, fetuin-A, alpha-1 anti-trypsin, and ceruloplasmin as being hyperfucosylated in HCC. The levels of these glycoproteins in 109 patients with CCA, primary sclerosing cholangitis (PSC), and control patients were compared to the performance of CA-19-9, the current "gold standard" assay for cholangiocarcinoma. RESULTS: Fucosylated Fetuin-A (fc-Fetuin-A) had the best ability to differentiate CCA from PSC, with an AUROC of 0.812 or 0.8665 at differentiating CCA from those with PSC or other liver disease. CA-19-9 had poor ability to differentiate PSC from cholangiocarcinoma (AUROC of 0.625). CONCLUSION AND CLINICAL RELEVANCE: Using glycomic and proteomic methods we identified a set of proteins that contain altered glycan in the sera of those with CCA. One of these proteins, fucosylated Fetuin-A may have value in the surveillance of people at risk for the development of cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/metabolismo , Fucose/metabolismo , Proteômica , alfa-2-Glicoproteína-HS/metabolismo , Neoplasias dos Ductos Biliares/sangue , Neoplasias dos Ductos Biliares/diagnóstico , Colangiocarcinoma/sangue , Colangiocarcinoma/diagnóstico , Feminino , Fucose/sangue , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade
10.
Cancer Res ; 77(3): 632-645, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27872089

RESUMO

Existing antiangiogenic approaches to treat metastatic hepatocellular carcinoma (HCC) are weakly effectual, prompting further study of tumor angiogenesis in this disease setting. Here, we report a novel role for sulfatase 2 (SULF2) in driving HCC angiogenesis. Sulf2-deficient mice (Sulf2 KO) exhibited resistance to diethylnitrosamine-induced HCC and did not develop metastases like wild-type mice (Sulf2 WT). The smaller and less numerous tumors formed in Sulf2 KO mice exhibited a markedly lower microvascular density. In human HCC cells, SULF2 overexpression increased endothelial proliferation, adhesion, chemotaxis, and tube formation in a paracrine fashion. Mechanistic analyses identified the extracellular matrix protein periostin (POSTN), a ligand of αvß3/5 integrins, as an effector protein in SULF2-induced angiogenesis. POSTN silencing in HCC cells attenuated SULF2-induced angiogenesis and tumor growth in vivo The TGFß1/SMAD pathway was identified as a critical signaling axis between SULF2 and upregulation of POSTN transcription. In clinical HCC specimens, elevated levels of SULF2 correlated with increased microvascular density, POSTN levels, and relatively poorer patient survival. Together, our findings define an important axis controlling angiogenesis in HCC and a mechanistic foundation for rational drug development. Cancer Res; 77(3); 632-45. ©2016 AACR.


Assuntos
Carcinoma Hepatocelular/patologia , Moléculas de Adesão Celular/biossíntese , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Hepáticas/patologia , Neovascularização Patológica/patologia , Animais , Biomarcadores Tumorais/análise , Western Blotting , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Imunoprecipitação da Cromatina , Ensaio de Imunoadsorção Enzimática , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Camundongos , Camundongos Knockout , Neovascularização Patológica/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo , Sulfatases , Sulfotransferases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
11.
Cancer Lett ; 380(1): 163-73, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27216979

RESUMO

Cholangiocarcinoma is a highly lethal cancer with limited therapeutic options. Recent genomic analysis of cholangiocarcinoma has revealed the presence of fibroblast growth factor receptor 2 (FGFR2) fusion proteins in up to 13% of intrahepatic cholangiocarcinoma (iCCA). FGFR fusions have been identified as a novel oncogenic and druggable target in a number of cancers. In this study, we established a novel cholangiocarcinoma patient derived xenograft (PDX) mouse model bearing an FGFR2-CCDC6 fusion protein from a metastatic lung nodule of an iCCA patient. Using this PDX model, we confirmed the ability of the FGFR inhibitors, ponatinib, dovitinib and BGJ398, to modulate FGFR signaling, inhibit cell proliferation and induce cell apoptosis in cholangiocarcinoma tumors harboring FGFR2 fusions. In addition, BGJ398 appeared to be superior in potency to ponatinib and dovitinib in this model. Our findings provide a strong rationale for the investigation of FGFR inhibitors, particularly BGJ398, as a therapeutic option for cholangiocarcinoma patients harboring FGFR2 fusions.


Assuntos
Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Proteínas do Citoesqueleto/metabolismo , Fusão Gênica , Neoplasias Pulmonares/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Pirimidinas/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Benzimidazóis/farmacologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Proliferação de Células/efeitos dos fármacos , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/secundário , Proteínas do Citoesqueleto/genética , Humanos , Imidazóis/farmacologia , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Piridazinas/farmacologia , Quinolonas/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Oncotarget ; 7(15): 20080-92, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26956050

RESUMO

Sphingosine kinase 2 (Sphk2) has an oncogenic role in cancer. A recently developed first-in-class Sphk2 specific inhibitor ABC294640 displays antitumor activity in many cancer models. However, the role of Sphk2 and the antitumor activity of its inhibitor ABC294640 are not known in cholangiocarcinoma. We investigated the potential of targeting Sphk2 for the treatment of cholangiocarcinoma. We found that Sphk2 is overexpressed in five established human cholangiocarcinoma cell lines (WITT, HuCCT1, EGI-1, OZ and HuH28) and a new patient-derived cholangiocarcinoma cell line (LIV27) compared to H69 normal cholangiocytes. Inhibition of Sphk2 by ABC294640 inhibited proliferation and induced caspase-dependent apoptosis. Furthermore, we found that ABC294640 inhibited STAT3 phosphorylation, one of the key signaling pathways regulating cholangiocarcinoma cell proliferation and survival. ABC294640 also induced autophagy. Inhibition of autophagy by bafilomycin A1 or chloroquine potentiated ABC294640-induced cytotoxicity and apoptosis. In addition, ABC294640 in combination with sorafenib synergistically inhibited cell proliferation of cholangiocarcinoma cells. Strong decreases in STAT3 phosphorylation were observed in WITT and HuCCT1 cells exposed to the ABC294640 and sorafenib combination. These findings provide novel evidence that Sphk2 may be a rational therapeutic target in cholangiocarcinoma. Combinations of ABC294640 with sorafenib and/or autophagy inhibitors may provide novel strategies for the treatment of cholangiocarcinoma.


Assuntos
Adamantano/análogos & derivados , Autofagia/efeitos dos fármacos , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Piridinas/farmacologia , Adamantano/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Proliferação de Células/efeitos dos fármacos , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/metabolismo , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Niacinamida/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe , Células Tumorais Cultivadas
13.
Cancer Med ; 4(10): 1599-602, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26276523

RESUMO

Genetic risk factors for cholangiocarcinoma (CCA) remain poorly understood. We assessed the effect of single-nucleotide polymorphisms (SNPs) of genes modulating inflammation or carcinogenesis on CCA risk and survival. We conducted a case-control, candidate gene association study of 370 CCA patients and 740 age-, sex-, and residential area-matched healthy controls. Eighteen functional or putatively functional SNPs in nine genes were genotyped. The log-additive genotype effects of SNPs on CCA risk and survival were determined using logistic regression and the log-rank test, respectively. Initial analysis identified significant associations between SNP rs2143417 and rs689466 in cyclooxygenase 2 (COX-2) and CCA risk, after adjusting for multiple comparisons (cutoff of P = 0.0028). However, these findings were not replicated in another independent cohort of 212 CCA cases and 424 matched controls. No significant association was found between any SNP and survival of CCA patients. Although COX-2 has been shown to contribute to cholangiocarcinogenesis, the COX-2 SNPs tested were not associated with risk of CCA. This study shows a lack of association between variants of genes related to inflammation and carcinogenesis and CCA risk and survival. Other factors than these genetic variants may play more important roles in CCA risk and survival.


Assuntos
Neoplasias dos Ductos Biliares/epidemiologia , Carcinogênese/genética , Colangiocarcinoma/epidemiologia , Inflamação/genética , Idoso , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/mortalidade , Estudos de Casos e Controles , Colangiocarcinoma/genética , Colangiocarcinoma/mortalidade , Colangite Esclerosante/genética , Ciclo-Oxigenase 2/genética , Citocinas/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco
14.
Med Epigenet ; 3(1): 1-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26236329

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the second most frequent cause of cancer death worldwide. Sulfatase 1 (SULF1) functions as a tumor suppressor in HCC cell lines in vitro, but also has an oncogenic effect in some HCCs in vivo. AIM: To examine the mechanisms regulating SULF1 and its function in HCC. METHODS: First, SULF1 mRNA and protein expression were examined. Second, we examined SULF1 gene copy number in HCC cells. Third, we assessed whether DNA methylation or methylation and/or acetylation of histone marks on the promoter regulate SULF1 expression. Finally, we examined the effect of 5-Aza-dC on sulfatase activity and drug-induced apoptosis. RESULTS: SULF1 mRNA was down-regulated in 9/11 HCC cell lines but only 6/10 primary tumors. SULF1 mRNA correlated with protein expression. Gene copy number assessment by fluorescence in situ hybridization showed intact SULF1 alleles in low SULF1 expressing cell lines. CpG island methylation in the SULF1 promoter and two downstream CpG islands did not show an inverse correlation between DNA methylation and SULF1 expression. However, chromatin immunoprecipitation showed that the SULF1 promoter acquires a silenced chromatin state in low SULF1-expressing cells through an increase in di/trimethyl-K9H3 and trimethyl-K27H3 and a concomitant loss of activating acetyl K9, K14H3 marks. 5-Aza-dC restored SULF1 mRNA expression in SULF1-negative cell lines, with an associated increase in sulfatase activity and sensitization of HCC cells to cisplatin-induced apoptosis. CONCLUSION: SULF1 gene silencing in HCC occurs through histone modifications on the SULF1 promoter. Restoration of SULF1 mRNA expression by 5-Aza-dC sensitized HCC cells to drug-induced apoptosis.

15.
Liver Transpl ; 21(5): 599-606, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25789635

RESUMO

Growing evidence suggests that pretransplant alpha-fetoprotein (AFP) predicts outcomes of hepatocellular carcinoma (HCC) patients treated with liver transplantation. We aimed to determine whether pretransplant AFP, Lens culinaris agglutinin-reactive alpha-fetoprotein (AFP-L3), and des-gamma-carboxyprothrombin (DCP) predicted HCC recurrence after transplantation. A retrospective cohort study of 313 HCC patients undergoing transplantation between 2000 and 2008 was conducted, and 48 (15.3%) developed recurrence during a median follow-up of 90.8 months. The 127 patients with available serum drawn before transplantation were included; they included 86 without recurrence and 41 with recurrence. Serum was tested for AFP, AFP-L3%, and DCP in a blinded fashion with the µTASWako i30 immunoanalyzer. All biomarkers were significantly associated with HCC recurrence. The hazard ratios (HRs) were 3.5 [95% confidence interval (CI), 1.9-6.7; P < 0.0001] for DCP ≥ 7.5 ng/mL and 2.8 (95% CI, 1.4-5.4; P = 0.002) for AFP ≥ 250 ng/mL. The HR increased to 5.2 (95% CI, 2.3-12.0; P < 0.0001) when AFP ≥ 250 ng/mL and DCP ≥7.5 ng/mL were considered together. When they were combined with the Milan criteria, the HR increased from 2.6 (95% CI, 1.4-4.7; P = 0.003) for outside the Milan criteria to 8.6 (95% CI, 3.0-24.6; P < 0.0001) for outside the Milan criteria and AFP ≥ 250 ng/mL and to 7.2 (95% CI, 2.8-18.1; P < 0.0001) for outside the Milan criteria and DCP ≥7.5 ng/mL. Our findings suggest that biomarkers are useful for predicting the risk of HCC recurrence after transplantation. Using both biomarkers and the Milan criteria may be better than using the Milan criteria alone in optimizing the decision of liver transplantation eligibility.


Assuntos
Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/cirurgia , Transplante de Fígado/métodos , Recidiva Local de Neoplasia/diagnóstico , Idoso , Biomarcadores/metabolismo , Carcinoma Hepatocelular/patologia , Estudos de Coortes , Feminino , Humanos , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Lectinas de Plantas/química , Modelos de Riscos Proporcionais , Precursores de Proteínas/metabolismo , Protrombina/metabolismo , Estudos Retrospectivos , Índice de Gravidade de Doença , Transdução de Sinais , Tomografia Computadorizada por Raios X/métodos , alfa-Fetoproteínas/metabolismo
16.
Hepatology ; 61(4): 1269-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25503294

RESUMO

UNLABELLED: In vitro studies have proposed a tumor suppressor role for sulfatase 1 (SULF1) in hepatocellular carcinoma (HCC); however, high expression in human HCC has been associated with poor prognosis. The reason underlying this paradoxical observation remains to be explored. Using a transgenic (Tg) mouse model overexpressing Sulf1 (Sulf1-Tg), we assessed the effects of SULF1 on the diethylnitrosamine model of liver carcinogenesis. Sulf1-Tg mice show a higher incidence of large and multifocal tumors with diethylnitrosamine injection compared to wild-type mice. Lung metastases were found in 75% of Sulf1-Tg mice but not in wild-type mice. Immunohistochemistry, immunoblotting, and reporter assays all show a significant activation of the transforming growth factor-ß (TGF-ß)/SMAD transcriptional pathway by SULF1 both in vitro and in vivo. This effect of SULF1 on the TGF-ß/SMAD pathway is functional; overexpression of SULF1 promotes TGF-ß-induced gene expression and epithelial-mesenchymal transition and enhances cell migration/invasiveness. Mechanistic analyses demonstrate that inactivating mutation of the catalytic site of SULF1 impairs the above actions of SULF1 and diminishes the release of TGF-ß from the cell surface. We also show that SULF1 expression decreases the interaction between TGF-ß1 and its heparan sulfate proteoglycan sequestration receptor, TGFßR3. Finally, using gene expression from human HCCs, we show that patients with high SULF1 expression have poorer recurrence-free survival (hazard ratio 4.1, 95% confidence interval 1.9-8.3; P = 0.002) compared to patients with low SULF1. We also found strong correlations of SULF1 expression with TGF-ß expression and with several TGF-ß-related epithelial-mesenchymal transition genes in human HCC. CONCLUSION: Our study proposes a novel role of SULF1 in HCC tumor progression through augmentation of the TGF-ß pathway, thus defining SULF1 as a potential biomarker for tumor progression and a novel target for drug development for HCC.


Assuntos
Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/etiologia , Proteínas Smad/fisiologia , Sulfotransferases/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Masculino , Camundongos , Ativação Transcricional
17.
PLoS One ; 9(4): e92273, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24710173

RESUMO

BACKGROUND AND AIMS: Brivanib is a selective inhibitor of vascular endothelial growth factor receptor (VEGFR) and fibroblast growth factor receptor (FGFR) tyrosine kinases, which are both involved in mechanisms of liver fibrosis. We hypothesized that inhibition of VEGFR and FGFR by brivanib would inhibit liver fibrosis. We therefore examined the effect of brivanib on liver fibrosis in three mouse models of fibrosis. METHODS: In vivo, we induced liver fibrosis by bile duct ligation (BDL), chronic carbon tetrachloride (CCl4), and chronic thioacetamide (TAA) administration. Liver fibrosis was examined by immunohistochemistry and Western immunoblotting. In vitro, we used LX-2 human hepatic stellate cells (HSCs) to assess the effect of brivanib on stellate cell proliferation and activation. RESULTS: After in vivo induction with BDL, CCl4, and TAA, mice treated with brivanib showed reduced liver fibrosis and decreased expression of collagen Iα1 and α-smooth muscle actin in the liver. In vitro, brivanib decreased proliferation of HSCs induced by platelet-derived growth factor (PDGF), VEGF, and FGF. Brivanib also decreased stellate cell viability and inhibited PDGFBB-induced phosphorylation of its cognate receptor. CONCLUSION: Brivanib reduces liver fibrosis in three different animal models and decreases human hepatic stellate cell activation. Brivanib may represent a novel therapeutic approach to treatment of liver fibrosis and prevention of liver cancer.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/prevenção & controle , Fator de Crescimento Derivado de Plaquetas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Alanina/análogos & derivados , Animais , Intoxicação por Tetracloreto de Carbono/metabolismo , Intoxicação por Tetracloreto de Carbono/patologia , Intoxicação por Tetracloreto de Carbono/prevenção & controle , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/biossíntese , Cadeia alfa 1 do Colágeno Tipo I , Células Estreladas do Fígado/patologia , Humanos , Imuno-Histoquímica , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/prevenção & controle , Camundongos , Triazinas
18.
J Biol Chem ; 288(29): 21389-21398, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23740243

RESUMO

Tissue regeneration requires the activation of a set of specific growth signaling pathways. The identity of these cascades and their biological roles are known; however, the molecular mechanisms regulating the interplay between these pathways remain poorly understood. Here, we define a new role for SULFATASE 2 (SULF2) in regulating tissue regeneration and define the WNT-GLI1 axis as a novel downstream effector for this sulfatase in a liver model of tissue regeneration. SULF2 is a heparan sulfate 6-O-endosulfatase, which releases growth factors from extracellular storage sites turning active multiple signaling pathways. We demonstrate that SULF2-KO mice display delayed regeneration after partial hepatectomy (PH). Mechanistic analysis of the SULF2-KO phenotype showed a decrease in WNT signaling pathway activity in vivo. In isolated hepatocytes, SULF2 deficiency blocked WNT-induced ß-CATENIN nuclear translocation, TCF activation, and proliferation. Furthermore, we identified the transcription factor GLI1 as a novel target of the SULF2-WNT cascade. WNT induces GLI1 expression in a SULF2- and ß-CATENIN-dependent manner. GLI1-KO mice phenocopied the SULF2-KO, showing delayed regeneration and decreased hepatocyte proliferation. Moreover, we identified CYCLIN D1, a key mediator of cell growth during tissue regeneration, as a GLI1 transcriptional target. GLI1 binds to the cyclin d1 promoter and regulates its activity and expression. Finally, restoring GLI1 expression in the liver of SULF2-KO mice after PH rescues CYCLIN D1 expression and hepatocyte proliferation to wild-type levels. Thus, together these findings define a novel pathway in which SULF2 regulates tissue regeneration in part via the activation of a novel WNT-GLI1-CYCLIN D1 pathway.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Regeneração Hepática , Sulfatases/metabolismo , Via de Sinalização Wnt , Animais , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Hepatectomia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Regeneração Hepática/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Sulfatases/deficiência , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt3A/farmacologia , Proteína GLI1 em Dedos de Zinco , beta Catenina/metabolismo
19.
PLoS Genet ; 9(4): e1003441, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23593033

RESUMO

We previously utilized a Sleeping Beauty (SB) transposon mutagenesis screen to discover novel drivers of HCC. This approach identified recurrent mutations within the Dlk1-Dio3 imprinted domain, indicating that alteration of one or more elements within the domain provides a selective advantage to cells during the process of hepatocarcinogenesis. For the current study, we performed transcriptome and small RNA sequencing to profile gene expression in SB-induced HCCs in an attempt to clarify the genetic element(s) contributing to tumorigenesis. We identified strong induction of Retrotransposon-like 1 (Rtl1) expression as the only consistent alteration detected in all SB-induced tumors with Dlk1-Dio3 integrations, suggesting that Rtl1 activation serves as a driver of HCC. While previous studies have identified correlations between disrupted expression of multiple Dlk1-Dio3 domain members and HCC, we show here that direct modulation of a single domain member, Rtl1, can promote hepatocarcinogenesis in vivo. Overexpression of Rtl1 in the livers of adult mice using a hydrodynamic gene delivery technique resulted in highly penetrant (86%) tumor formation. Additionally, we detected overexpression of RTL1 in 30% of analyzed human HCC samples, indicating the potential relevance of this locus as a therapeutic target for patients. The Rtl1 locus is evolutionarily derived from the domestication of a retrotransposon. In addition to identifying Rtl1 as a novel driver of HCC, our study represents one of the first direct in vivo demonstrations of a role for such a co-opted genetic element in promoting carcinogenesis.


Assuntos
Neoplasias Hepáticas , Proteínas da Gravidez , Retroelementos/genética , Animais , Transformação Celular Neoplásica , Cromossomos Humanos Par 14/metabolismo , Regulação Neoplásica da Expressão Gênica , Impressão Genômica , Humanos , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Mutação , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Transposases/metabolismo
20.
J Mol Biomark Diagn ; 4(145): 1000145, 2013 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-25077038

RESUMO

BACKGROUND: Although cholangiocarcinoma (CC) is an uncommon and highly lethal malignancy, early detection enables the application of potentially curative therapies and improves survival. Consequently, tools to improve the early diagnosis of CC are urgently needed. During a screen for genes epigenetically suppressed by methylation in CC that might serve as methylation markers for CC, we found that the BMP3 gene is methylated in CC cell lines, but the potential diagnostic value and the function of BMP3 in CC are unknown. METHODS: We aimed to quantitatively assess BMP3 methylation in resected CC tumor specimens using methylation specific PCR and evaluate the tumor suppressor role of BMP3 in biliary cancer cell lines in comparison to an immortalized normal cholangiocyte cell line. Expression of BMP3 was quantified by mRNA levels before and after treatment with 5-Aza-2'-deoxycytidine and trichostatin A. After transfection with a BMP3-containing plasmid, cell viability was measured using the bromodeoxyuridine incorporation assay and apoptosis quantified by caspase assay. RESULTS: In primary CC tumor tissue specimens significantly more methylated BMP3 copies were found when compared to matched benign bile duct epithelium from the same patient, with high specificity. BMP3 expression was absent in cell lines with BMP3 methylation; this suppression of BMP3 expression was reversed by treatment with a DNA demethylating agent and histone de-acetylase inhibitor. Transfection of a BMP3-expressing construct into a BMP3-negative biliary cancer cell line restored BMP3 mRNA expression and reduced cell proliferation and cell viability while increasing the rate of apoptosis. CONCLUSION: These findings strongly support a tumor suppressor role for BMP3 in CC and suggest that BMP3 methylation may be a new biomarker for early detection of CCs. of the peptidome are also involved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA