Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0301396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776291

RESUMO

BACKGROUND: In the search for better anticancer drugs, computer-aided drug design (CADD) techniques play an indispensable role in facilitating the lengthy and costly drug discovery process especially when natural products are involved. Anthraquinone is one of the most widely-recognized natural products with anticancer properties. This review aimed to systematically assess and synthesize evidence on the utilization of CADD techniques centered on the anthraquinone scaffold for cancer treatment. METHODS: The conduct and reporting of this review were done in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) 2020 guideline. The protocol was registered in the "International prospective register of systematic reviews" database (PROSPERO: CRD42023432904) and also published recently. The search strategy was designed based on the combination of concept 1 "CADD or virtual screening", concept 2 "anthraquinone" and concept 3 "cancer". The search was executed in PubMed, Scopus, Web of Science and MedRxiv on 30 June 2023. RESULTS: Databases searching retrieved a total of 317 records. After deduplication and applying the eligibility criteria, the final review ended up with 32 articles in which 3 articles were found by citation searching. The CADD methods used in the studies were either structure-based alone (69%) or combined with ligand-based methods via parallel (9%) or sequential (22%) approaches. Molecular docking was performed in all studies, with Glide and AutoDock being the most popular commercial and public software used respectively. Protein data bank was used in most studies to retrieve the crystal structure of the targets of interest while the main ligand databases were PubChem and Zinc. The utilization of in-silico techniques has enabled a deeper dive into the structural, biological and pharmacological properties of anthraquinone derivatives, revealing their remarkable anticancer properties in an all-rounded fashion. CONCLUSION: By harnessing the power of computational tools and leveraging the natural diversity of anthraquinone compounds, researchers can expedite the development of better drugs to address the unmet medical needs in cancer treatment by improving the treatment outcome for cancer patients.


Assuntos
Antraquinonas , Antineoplásicos , Desenho de Fármacos , Simulação de Acoplamento Molecular , Neoplasias , Antraquinonas/química , Antraquinonas/uso terapêutico , Antraquinonas/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Desenho Assistido por Computador , Descoberta de Drogas/métodos
2.
Heliyon ; 10(3): e25734, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356603

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely recognized for their analgesic and anti-inflammatory properties. Amidst the SARS-CoV-2 pandemic, the role of NSAIDs in modulating viral and bacterial infections has become a critical area of research, sparking debates and necessitating a thorough review. This review examines the multifaceted interactions between NSAIDs, immune responses, and infections. Focusing on the immunomodulatory mechanisms of NSAIDs in SARS-CoV-2 and their implications for other viral and bacterial infections, we aim to provide clarity and direction for future therapeutic strategies. NSAIDs demonstrate a dual role in infectious diseases. They reduce inflammation by decreasing neutrophil recruitment and cytokine release, yet potentially compromise antiviral defense mechanisms. They also modulate cytokine storms in SARS-CoV-2 and exhibit the potential to enhance anti-tumor immunity by inhibiting tumor-induced COX-2/PGE2 signaling. Specific NSAIDs have shown efficacy in inhibiting viral replication. The review highlights NSAIDs' synergy with other medications, like COX inhibitors and immunotherapy agents, in augmenting therapeutic effects. Notably, the World Health Organization's analysis found no substantial link between NSAIDs and the worsening of viral respiratory infections. The findings underscore NSAIDs' complex role in infection management. Understanding these interactions is crucial for optimizing therapeutic approaches in current and future pandemics. However, their dual nature warrants cautious application, particularly in vulnerable populations. NSAIDs present a paradoxical impact on immune responses in viral and bacterial infections. While offering potential benefits, their usage in infectious diseases, especially SARS-CoV-2, demands a nuanced understanding to balance therapeutic advantages against possible adverse effects.

3.
J Evid Based Integr Med ; 28: 2515690X231206227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822215

RESUMO

Cassava (Manihot esculenta Crantz) is considered one of the essential tuber crops, serving as a dietary staple food for various populations. This systematic review provides a comprehensive summary of the nutritional and therapeutic properties of cassava, which is an important dietary staple and traditional medicine. The review aims to evaluate and summarize the phytochemical components of cassava and their association with pharmacological activities, traditional uses, and nutritional importance in global food crises. To collect all relevant information, electronic databases; Cochrane Library, PubMed, Scopus, Web of Science, Google Scholar, and Preprint Platforms were searched for studies on cassava from inception until October 2022. A total of 1582 studies were screened, while only 34 were included in this review. The results of the review indicate that cassava has diverse pharmacological activities, including anti-bacterial, anti-cancer, anti-diabetic, anti-diarrheal, anti-inflammatory, hypocholesterolemic effects, and wound healing properties. However, more studies that aim to isolate the phytochemicals in cassava extracts and evaluate their pharmacological property are necessary to further validate their medical and nutritional values.


Assuntos
Manihot , Manihot/química , Verduras , Produtos Agrícolas/química , Tubérculos , Valor Nutritivo
4.
PLoS One ; 18(9): e0290948, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37656730

RESUMO

There is still unmet medical need in cancer treatment mainly due to drug resistance and adverse drug events. Therefore, the search for better drugs is essential. Computer-aided drug design (CADD) and discovery tools are useful to streamline the lengthy and costly drug development process. Anthraquinones are a group of naturally occurring compounds with unique scaffold that exert various biological properties including anticancer activities. This protocol describes a systematic review that provide insights into the computer-aided drug design and discovery based on anthraquinone scaffold for cancer treatment. It was prepared in accordance with the "Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 guidelines, and published in the "International prospective register of systematic reviews" database (PROSPERO: CRD42023432904). Search strategies will be developed based on the combination of relevant keywords and executed in PubMed, Scopus, Web of Science and MedRxiv. Only original studies that employed CADD as primary tool in virtual screening for the purpose of designing or discovering anti-cancer drugs involving anthraquinone scaffold published in English language will be included. Two independent reviewers will be involved to screen and select the papers, extract the data and assess the risk of bias. Apart from exploring the trends and types of CADD methods used, the target proteins of these compounds in cancer treatment will also be revealed in this review. It is believed that the outcome of this study could be utilized to support the ongoing research in similar area with better quality and greater probability of success, consequently optimizing the resources in subsequent in vitro, in vivo, non-clinical and clinical development. It will also serve as an evidence based scientific guide for new research to design novel anthraquinone-derived drug with improved efficacy and safety profile for cancer treatment.


Assuntos
Neoplasias , Humanos , Antraquinonas/farmacologia , Desenho de Fármacos , Metanálise como Assunto , Neoplasias/tratamento farmacológico , Revisões Sistemáticas como Assunto
5.
Front Biosci (Landmark Ed) ; 28(7): 137, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37525906

RESUMO

BACKGROUND: Hydroxychloroquine (HCQ) toxicity can adversely affect vital organs, cause pathologic ocular damage, and can have direct cardiovascular effects. This study aims to identify the biochemical, hematological, and histological alterations of the vital organs associated with the effects of HCQ. METHODS: Male albino rats were exposed to the equivalent of HCQ therapeutic doses given to human patients being affected by malaria, lupus erythematosus, and COVID-19. The animal blood samples were subjected to hematological analysis, biochemical analysis, liver function tests, kidney function tests, and cardiac biomarkers. Liver, kidney, heart, spleen, and testis biopsies were subjected to histological examination. RESULTS: HCQ significantly lowered the values of erythrocytes, hemoglobin, hematocrit, platelets, leucocytes, and lymphocytes but significantly increased the values of aspartate aminotransferase (AST), alanine aminotransferase (ALT), amylase, alkaline phosphatase, lactate dehydrogenase, cholesterol, and chlorine ions. The renal tissues of HCQ-treated animals demonstrated glomerular fragmentation, partial atrophy degeneration, renal tubules hydropic degeneration, hyaline cast formation, and interstitial edema formation. Additionally, the heart exhibited myofiber necrosis, myolysis, wavy appearance, disorganization, and disarray. The testicular tissues also demonstrated spermatocyte degeneration, spermatogenic cell sloughing, testicular interstitial edema, and occasional spermatogenic arrest. Additionally, the spleen showed a decrease in the number and size of the white pulp follicles, a decrease in the number of apoptotic activity, and a decline in the number of T-rich cells. However, the red pulp demonstrated a diffuse decline in B rich-lymphocytes and macrophages. The liver was also the least affected but showed Kupffer cell hyperplasia and occasional hepatocyte dysplasia. CONCLUSIONS: The results indicate that chronic exposure to HCQ could alter the structures and functions of the vital organs.


Assuntos
COVID-19 , Hidroxicloroquina , Ratos , Animais , Humanos , Masculino , Hidroxicloroquina/toxicidade , Tratamento Farmacológico da COVID-19 , Fígado/patologia , Necrose/patologia
6.
J Biomol Struct Dyn ; 41(19): 9756-9769, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36399018

RESUMO

Antimicrobial drug resistance (AMR) is a severe global threat to public health. The increasing emergence of drug-resistant bacteria requires the discovery of novel antibacterial agents. Quinoline derivatives have previously been reported to exhibit antimalarial, antiviral, antitumor, antiulcer, antioxidant and, most interestingly, antibacterial properties. In this study, we evaluated the binding affinity of three newly designed hydroxyquinolines derived from sulfanilamide (1), 4-amino benzoic acid (2) and sulfanilic acid (3) towards five bacterial protein targets (PDB ID: 1JIJ, 3VOB, 1ZI0, 6F86, 4CJN). The three derivatives were designed considering the amino acid residues identified at the active site of each protein involved in the binding of each co-crystallized ligand and drug-likeness properties. The ligands displayed binding energy values with the target proteins ranging from -2.17 to -8.45 kcal/mol. Compounds (1) and (3) showed the best binding scores towards 1ZI0/3VOB and 1JIJ/4CJN, respectively, which may serve as new antibiotic scaffolds. Our in silico results suggest that sulfanilamide (1) or sulfanilic acid (3) hydroxyquinoline derivatives have the potential to be developed as bacterial inhibitors, particularly MRSA inhibitors. But before that, it must go through the proper preclinical and clinical trials for further scientific validation. Further experimental studies are warranted to explore the antibacterial potential of these compounds through preclinical and clinical studies.Communicated by Ramaswamy H. Sarma.


Assuntos
Hidroxiquinolinas , Simulação de Dinâmica Molecular , Proteínas de Bactérias , Oxiquinolina/farmacologia , Antibacterianos/farmacologia , Sulfanilamida , Hidroxiquinolinas/farmacologia , Inibidores de Proteases , Simulação de Acoplamento Molecular
7.
Molecules ; 27(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36296655

RESUMO

Chalcones have been well examined in the extant literature and demonstrated antibacterial, antifungal, anti-inflammatory, and anticancer properties. A detailed evaluation of the purported health benefits of chalcone and its derivatives, including molecular mechanisms of pharmacological activities, can be further explored. Therefore, this review aimed to describe the main characteristics of chalcone and its derivatives, including their method synthesis and pharmacotherapeutics applications with molecular mechanisms. The presence of the reactive α,ß-unsaturated system in the chalcone's rings showed different potential pharmacological properties, including inhibitory activity on enzymes, anticancer, anti-inflammatory, antibacterial, antifungal, antimalarial, antiprotozoal, and anti-filarial activity. Changing the structure by adding substituent groups to the aromatic ring can increase potency, reduce toxicity, and broaden pharmacological action. This report also summarized the potential health benefits of chalcone derivatives, particularly antimicrobial activity. We found that several chalcone compounds can inhibit diverse targets of antibiotic-resistance development pathways; therefore, they overcome resistance, and bacteria become susceptible to antibacterial compounds. A few chalcone compounds were more active than conventional antibiotics, like vancomycin and tetracycline. On another note, a series of pyran-fused chalcones and trichalcones can block the NF-B signaling complement system implicated in inflammation, and several compounds demonstrated more potent lipoxygenase inhibition than NSAIDs, such as indomethacin. This report integrated discussion from the domains of medicinal chemistry, organic synthesis, and diverse pharmacological applications, particularly for the development of new anti-infective agents that could be a useful reference for pharmaceutical scientists.


Assuntos
Anti-Infecciosos , Antimaláricos , Chalcona , Chalconas , Chalcona/farmacologia , Chalconas/farmacologia , Chalconas/química , Antifúngicos/farmacologia , Vancomicina , Antimaláricos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios não Esteroides/farmacologia , Indometacina , Preparações Farmacêuticas , Lipoxigenases , Tetraciclinas , Relação Estrutura-Atividade
8.
Biomolecules ; 12(7)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35883434

RESUMO

Colorectal cancer is one of the most prevalent cancer types. Although there have been breakthroughs in its treatments, a better understanding of the molecular mechanisms and genetic involvement in colorectal cancer will have a substantial role in producing novel and targeted treatments with better safety profiles. In this review, the main molecular pathways and driver genes that are responsible for initiating and propagating the cascade of signaling molecules reaching carcinoma and the aggressive metastatic stages of colorectal cancer were presented. Protein kinases involved in colorectal cancer, as much as other cancers, have seen much focus and committed efforts due to their crucial role in subsidizing, inhibiting, or changing the disease course. Moreover, notable improvements in colorectal cancer treatments with in silico studies and the enhanced selectivity on specific macromolecular targets were discussed. Besides, the selective multi-target agents have been made easier by employing in silico methods in molecular de novo synthesis or target identification and drug repurposing.


Assuntos
Neoplasias Colorretais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Humanos , Transdução de Sinais
9.
Front Pharmacol ; 13: 865801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846992

RESUMO

Colorectal cancer (CRC) is the second most deadly cancer worldwide. CRC management is challenging due to late detection, high recurrence rate, and multi-drug resistance. Herbs and spices used in cooking, practised for generations, have been shown to contain CRC protective effect or even be useful as an anti-CRC adjuvant therapy when used in high doses. Herbs and spices contain many bioactive compounds and possess many beneficial health effects. The chemopreventive properties of these herbs and spices are mainly mediated by the BCL-2, K-ras, and MMP pathways, caspase activation, the extrinsic apoptotic pathway, and the regulation of ER-stress-induced apoptosis. As a safer natural alternative, these herbs and spices could be good candidates for chemopreventive or chemotherapeutic agents for CRC management because of their antiproliferative action on colorectal carcinoma cells and inhibitory activity on angiogenesis. Therefore, in this narrative review, six different spices and herbs: ginger (Zingiber officinale Roscoe), turmeric (Curcuma longa L.), garlic (Allium sativum L.), fenugreek (Trigonella foenum-graecum L.), sesame (Sesamum indicum L.), and flaxseed (Linum usitatissimum L.) used in daily cuisine were selected for this study and analyzed for their chemoprotective or chemotherapeutic roles in CRC management with underlying molecular mechanisms of actions. Initially, this study comprehensively discussed the molecular basis of CRC development, followed by culinary and traditional uses, current scientific research, and publications of selected herbs and spices on cancers. Lead compounds have been discussed comprehensively for each herb and spice, including anti-CRC phytoconstituents, antioxidant activities, anti-inflammatory properties, and finally, anti-CRC effects with treatment mechanisms. Future possible works have been suggested where applicable.

10.
Chem Biol Drug Des ; 100(2): 185-217, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35490393

RESUMO

Cheminformatics utilizing machine learning (ML) techniques have opened up a new horizon in drug discovery. This is owing to vast chemical space expansion with rocketing numbers of expected hits and lead compounds that match druggable macromolecular targets, in particular from natural compounds. Due to the natural products' (NP) structural complexity, uniqueness, and diversity, they could occupy a bigger space in pharmaceuticals, allowing the industry to pursue more selective leads in the nanomolar range of binding affinity. ML is an essential part of each step of the drug design pipeline, such as target prediction, compound library preparation, and lead optimization. Notably, molecular mechanic and dynamic simulations, induced docking, and free energy perturbations are essential in predicting best binding poses, binding free energy values, and molecular mechanics force fields. Those applications have leveraged from artificial intelligence (AI), which decreases the computational costs required for such costly simulations. This review aimed to describe chemical space and compound libraries related to NPs. High-throughput screening utilized for fractionating NPs and high-throughput virtual screening and their strategies, and significance, are reviewed. Particular emphasis was given to AI approaches, ML tools, algorithms, and techniques, especially in drug discovery of macrocyclic compounds and approaches in computer-aided and ML-based drug discovery. Anthraquinone derivatives were discussed as a source of new lead compounds that can be developed using ML tools for diverse medicinal uses such as cancer, infectious diseases, and metabolic disorders. Furthermore, the power of principal component analysis in understanding relevant protein conformations, and molecular modeling of protein-ligand interaction were also presented. Apart from being a concise reference for cheminformatics, this review is a useful text to understand the application of ML-based algorithms to molecular dynamics simulation and in silico absorption, distribution, metabolism, excretion, and toxicity prediction.


Assuntos
Produtos Biológicos , Antraquinonas/farmacologia , Inteligência Artificial , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Quimioinformática , Aprendizado de Máquina , Simulação de Dinâmica Molecular
11.
Molecules ; 27(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335312

RESUMO

Common wheat (Triticum aestivum), one of the world's most consumed cereal grains, is known for its uses in baking and cooking in addition to its medicinal uses. As this plant's medical benefits are enormous and scattered, this narrative review was aimed at describing the pharmacological activities, phytochemistry, and the nutritional values of Triticum aestivum. It is a good source of dietary fiber, resistant starch, phenolic acids, alkylresorcinols, lignans, and diverse antioxidant compounds such as carotenoids, tocopherols and tocotrienols. These constituents provide Triticum aestivum with a wide range of pharmacological properties, including anticancer, antimicrobial, antidiabetic, hypolipemic, antioxidant, laxative, and moisturizing effects. This review summarized the established benefits of wheat in human health, the mode of action, and different clinical, in vitro and in vivo studies for different varieties and cultivars. This review also gives an insight for future research into the better use of this plant as a functional food. More clinical trials, in vivo and in vitro studies are warranted to broaden the knowledge about the effect of Triticum aestivum on nutrition-related diseases prevention, and physical and mental well-being sustenance.


Assuntos
Antioxidantes , Triticum , Antioxidantes/química , Antioxidantes/farmacologia , Fibras na Dieta , Grão Comestível , Alimento Funcional , Humanos , Triticum/química
12.
Biomed Pharmacother ; 146: 112568, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34963086

RESUMO

Plums is one of the most cultivated stone fruits due to its fast growing popularity. It has various traditionally recognized health benefits. There are two main commercial types of plums: the European plum (Prunus domestica) and the Japanese plum (Prunus salicina), each having many varieties. Researchers are gathering further evidence of pharmacological effects for plums by scientifically studying its anti-inflammatory, antioxidant properties. A systematic review analysing the literature related to the effects of plums on prevention and treatment of cancer is warranted. This is the first review examining the cancer-related effects of plums. Antioxidation properties of the active constituents of plum were also compared. Scopus, Google Scholar, PubMed, Medxriv and Cochrane Library databases, from their date of inception until July 2021 were utilized. The risk of bias was assessed using CONSORT checklist. A total of 6639 studies were screened and eventually only 54 studies were included. Full-text review of included studies revealed that plum extracts were rich in antioxidants. Overall, most of the studies that fulfilled the eligibility criteria were in vitro and a few clinical studies involving in vivo work. Therefore, it would be beneficial to perform more studies on animals or humans, to confirm that the result obtained from these in vitro studies are able to be extrapolated in a wider range of applications. Further clinical and in vivo studies are warranted to validate plums as a functional food for treatment and prevention of cancer.


Assuntos
Antioxidantes/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Prunus , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sequestradores de Radicais Livres/farmacologia , Humanos , Neoplasias/patologia
13.
Molecules ; 27(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35011441

RESUMO

Coriandrum sativum (C. sativum), belonging to the Apiaceae (Umbelliferae) family, is widely recognized for its uses in culinary and traditional medicine. C. sativum contains various phytochemicals such as polyphenols, vitamins, and many phytosterols, which account for its properties including anticancer, anti-inflammatory, antidiabetic, and analgesic effects. The cardiovascular benefits of C. sativum have not been summarized before, hence this review aims to further evaluate and discuss its effectiveness in cardiovascular diseases, according to the recent literature. An electronic search for literature was carried out using the following databases: PubMed, Scopus, Google Scholar, preprint platforms, and the Cochrane Database of Systematic Reviews. Articles were gathered from the inception of the database until August 2021. Moreover, the traditional uses and phytochemistry of coriander were surveyed in the original resources and summarized. As a result, most of the studies that cover cardiovascular benefits and fulfilled the eligibility criteria were in vivo, while only a few were in vitro and clinical studies. In conclusion, C. sativum can be deemed a functional food due to its wide range of cardiovascular benefits such as antihypertensive, anti-atherogenic, antiarrhythmic, hypolipidemic as well as cardioprotective effects.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Coriandrum/química , Etnofarmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Animais , Coriandrum/classificação , Etnofarmacologia/métodos , Alimento Funcional , Avaliação do Impacto na Saúde , Humanos , Medicina Tradicional , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA