Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gene ; 901: 148128, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181927

RESUMO

Cyclophosphamide (CP), as an anti-cancer drug, is frequently used to treat various types of cancer. A decreased number of ovarian follicles impaired normal ovarian function, and subsequent premature ovarian failure (POF) presented as a side effect of cyclophosphamide usage. These events may eventually affect the fertility rate of individuals. The present study showed the effect of cyclophosphamide on ovarian reserves and the protective effect of L-carnitine (LC) as an antioxidant to prevent POF. To design the study, six to eight-week-old NMRI female mice were divided into three groups: control, cyclophosphamide (CP), and cyclophosphamide + L-carnitine (CP + LC). Mice received drugs intraperitoneally (IP) for 21 days. In the following 24 h after the last injection, both ovaries were used to evaluate the expression of Sohlh1 and Lhx8 genes by Real-time PCR. Furthermore, the alteration of Lhx8 promoter methylation was examined by Methylation-sensitive high-resolution melting analysis (MS-HRM). The present data showed the negative effect of CP on regulator genes of oogenesis including Sohlh1 and Lhx8. In addition, an examination of the epigenetic status of the Lhx8 gene showed a change in promoter methylation of this gene following cyclophosphamide injection. Although, L-carnitine is an effective antioxidant in relieving oxidative stress caused by cyclophosphamide and its damage, in the present study, however, the use of L-carnitine failed to protect the ovaries from changes caused by CP injection. So, using cyclophosphamide can alter the expression of folliculogenesis genes through its effects on epigenetic changes and may cause POF. The results of the present study showed that L-carnitine consumption can't protect the ovaries against the adverse effects of CP.


Assuntos
Antioxidantes , Insuficiência Ovariana Primária , Humanos , Camundongos , Feminino , Animais , Antioxidantes/farmacologia , Fatores de Transcrição , Carnitina/farmacologia , Carnitina/uso terapêutico , Ciclofosfamida/efeitos adversos , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/tratamento farmacológico , Insuficiência Ovariana Primária/genética , Epigênese Genética , Reação em Cadeia da Polimerase em Tempo Real
2.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675153

RESUMO

Folate deficiencies, folate imbalance and associated abnormal methylation are associated with birth defects, developmental delays, neurological conditions and diseases. In the hydrocephalic Texas (H-Tx) rat, 10-formyl tetrahydrofolate dehydrogenase (FDH) is reduced or absent from the CSF and the nuclei of cells in the brain and liver and this is correlated with decreased DNA methylation. In the present study, we tested whether impaired folate metabolism or methylation exists in sexually mature, unaffected H-Tx rats, which may explain the propagation of hydrocephalus in their offspring. We compared normal Sprague Dawley (SD, n = 6) rats with untreated H-Tx (uH-Tx, n = 6 and folate-treated H-Tx (TrH-Tx, n = 4). Structural abnormalities were observed in the testis of uH-Tx rats, with decreased methylation, increased demethylation, and cell death, particularly of sperm. FDH and FRα protein expression was increased in uH-Tx males but not in folate-treated males but tissue folate levels were unchanged. 5-Methylcytosine was significantly reduced in untreated and partially restored in treated individuals, while 5-hydroxymethylcytosine was not significantly changed. Similarly, a decrease in DNA-methyltransferase-1 expression in uH-Tx rats was partially reversed with treatment. The data expose a significant germline methylation error in unaffected adult male H-Tx rats from which hydrocephalic offspring are obtained. Reduced methylation in the testis and sperm was partially recovered by treatment with folate supplements leading us to conclude that this neurological disorder may not be completely eradicated by maternal supplementation alone.


Assuntos
Ácido Fólico , Hidrocefalia , Animais , Masculino , Ratos , Metilação de DNA , Ácido Fólico/metabolismo , Ácido Fólico/farmacologia , Ácido Fólico/uso terapêutico , Ratos Sprague-Dawley , Sêmen/metabolismo , Hidrocefalia/congênito , Hidrocefalia/tratamento farmacológico , Hidrocefalia/genética , Hidrocefalia/metabolismo , Modelos Animais de Doenças , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo
3.
J Assist Reprod Genet ; 28(4): 343-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21207131

RESUMO

PURPOSE: During laboratory manipulations, oocytes and embryos are inevitably exposed to suboptimal conditions that interfere with the normal development of embryos. MATERIALS AND METHODS: In this study, we examined the effects of antioxidants, feeder cells and a conditioned medium on embryo development and cleavage rate following exposure of the embryos to suboptimal conditions. We exposed mouse two-cell embryos to visible light and divided them into four groups: control (E-ctr), co-culture (Co-c), conditioned medium (Cndm) and antioxidant-plus medium (Aopm). We used human umbilical cord matrix-derived mesenchymal cells for co-culture. A group of embryos was not exposed to visible light and served as the non-exposed control (NE-ctr) group. RESULTS: The developmental rate was higher in NE-ctr embryos than in the E-ctr group. Exposed embryos in the various groups showed a comparable developmental rate at different stages. Blastomere number significantly increased (P < 0.05) in the Co-c and Aopm groups compared with the E-ctr and Cndm groups. No significant difference was observed between the Co-c and Aopm groups. CONCLUSIONS: Our data indicate that in suboptimal conditions, antioxidants could improve the embryo cleavage rate in the same way as feeder cells. Antioxidants probably improve embryo quality through their ability to scavenge reactive oxygen species.


Assuntos
Antioxidantes/farmacologia , Técnicas de Cocultura/métodos , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Animais , Blastocisto/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Fase de Clivagem do Zigoto/efeitos dos fármacos , Meios de Cultivo Condicionados , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Humanos , Luz , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA