Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062531

RESUMO

DZNep (3-deazaneplanocin A) is commonly used to reduce lysine methylation. DZNep inhibits S-adenosyl-l-homocysteine hydrolase (AHCY), preventing the conversion of S-adenosyl-l-homocysteine (SAH) into L-homocysteine. As a result, the SAM-to-SAH ratio decreases, an indicator of the methylation potential within a cell. Many studies have characterized the impact of DZNep on histone lysine methylation or in specific cell or disease contexts, but there has yet to be a study looking at the potential downstream impact of DZNep treatment on proteins other than histones. Recently, protein thermal stability has provided a new dimension for studying the mechanism of action of small-molecule inhibitors. In addition to ligand binding, post-translational modifications and protein-protein interactions impact thermal stability. Here, we sought to characterize the protein thermal stability changes induced by DZNep treatment in HEK293T cells using the Protein Integral Solubility Alteration (PISA) assay. DZNep treatment altered the thermal stability of 135 proteins, with over half previously reported to be methylated at lysine residues. In addition to thermal stability, we identify changes in transcript and protein abundance after DZNep treatment to distinguish between direct and indirect impacts on thermal stability. Nearly one-third of the proteins with altered thermal stability had no changes at the transcript or protein level. Of these thermally altered proteins, CDK6 had a stabilized methylated peptide, while its unmethylated counterpart was unaltered. Multiple methyltransferases were among the proteins with thermal stability alteration, including DNMT1, potentially due to changes in the SAM/SAH levels. This study systematically evaluates DZNep's impact on the transcriptome, the proteome, and the thermal stability of proteins.


Assuntos
Adenosina , Estabilidade Proteica , Humanos , Células HEK293 , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina/química , Estabilidade Proteica/efeitos dos fármacos , Metilação , Adenosil-Homocisteinase/antagonistas & inibidores , Adenosil-Homocisteinase/metabolismo , Temperatura
2.
bioRxiv ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38798459

RESUMO

Background: Triple negative breast cancer (TNBC), characterized by the lack of three canonical receptors, is unresponsive to commonly used hormonal therapies. One potential TNBC-specific therapeutic target is NQO1, as it is highly expressed in many TNBC patients and lowly expressed in non-cancer tissues. DNA damage induced by NQO1 bioactivatable drugs in combination with Rucaparib-mediated inhibition of PARP1-dependent DNA repair synergistically induces cell death. Methods: To gain a better understanding of the mechanisms behind this synergistic effect, we used global proteomics, phosphoproteomics, and thermal proteome profiling to analyze changes in protein abundance, phosphorylation and protein thermal stability. Results: Very few protein abundance changes resulted from single or dual agent treatment; however, protein phosphorylation and thermal stability were impacted. Histone H2AX was among several proteins identified to have increased phosphorylation when cells were treated with the combination of IB-DNQ and Rucaparib, validating that the drugs induced persistent DNA damage. Thermal proteome profiling revealed destabilization of H2AX following combination treatment, potentially a result of the increase in phosphorylation. Kinase substrate enrichment analysis predicted altered activity for kinases involved in DNA repair and cell cycle following dual agent treatment. Further biophysical analysis of these two processes revealed alterations in SWI/SNF complex association and tubulin / p53 interactions. Conclusions: Our findings that the drugs target DNA repair and cell cycle regulation, canonical cancer treatment targets, in a way that is dependent on increased expression of a protein selectively found to be upregulated in cancers without impacting protein abundance illustrate that multi-omics methodologies are important to gain a deeper understanding of the mechanisms behind treatment induced cancer cell death.

3.
Pharmacol Res ; 201: 107092, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311014

RESUMO

AP endonuclease-1/Redox factor-1 (APE1/Ref-1 or Ref-1) is a multifunctional protein that is overexpressed in most aggressive cancers and impacts various cancer cell signaling pathways. Ref-1's redox activity plays a significant role in activating transcription factors (TFs) such as NFκB, HIF1α, STAT3 and AP-1, which are crucial contributors to the development of tumors and metastatic growth. Therefore, development of potent, selective inhibitors to target Ref-1 redox function is an appealing approach for therapeutic intervention. A first-generation compound, APX3330 successfully completed phase I clinical trial in adults with progressing solid tumors with favorable response rate, pharmacokinetics (PK), and minimal toxicity. These positive results prompted us to develop more potent analogs of APX3330 to effectively target Ref-1 in solid tumors. In this study, we present structure-activity relationship (SAR) identification and validation of lead compounds that exhibit a greater potency and a similar or better safety profile to APX3330. In order to triage and characterize the most potent and on-target second-generation Ref-1 redox inhibitors, we assayed for PK, mouse and human S9 fraction metabolic stability, in silico ADMET properties, ligand-based WaterLOGSY NMR measurements, pharmacodynamic markers, cell viability in multiple cancer cell types, and two distinct 3-dimensional (3D) cell killing assays (Tumor-Microenvironment on a Chip and 3D spheroid). To characterize the effects of Ref-1 inhibition in vivo, global proteomics was used following treatment with the top four analogs. This study identified and characterized more potent inhibitors of Ref-1 redox function (that outperformed APX3330 by 5-10-fold) with PK studies demonstrating efficacious doses for translation to clinic.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Neoplasias , Adulto , Humanos , Animais , Camundongos , Inibidores da Angiogênese , Apoptose , Bioensaio , Neoplasias/tratamento farmacológico , Microambiente Tumoral
4.
J Orthop Trauma ; 38(3): e111-e119, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117580

RESUMO

OBJECTIVES: The objective of this study was to compare plasma proteomes of patients with confirmed fracture-related infections (FRIs) matched to noninfected controls using liquid chromatography-mass spectrometry. DESIGN: This was a prospective case-control study. SETTING: The study was conducted at a single, academic, Level 1 trauma center. PATIENT SELECTION CRITERIA: Patients meeting confirmatory FRI criteria were matched to controls without infection based on fracture region, age, and time after surgery from June 2019 to January 2022. Tandem mass tag liquid chromatography-mass spectrometry analysis of patient plasma samples was performed. OUTCOME MEASURES AND COMPARISONS: Protein abundance ratios in plasma for patients with FRI compared with those for matched controls without infection were calculated. RESULTS: Twenty-seven patients meeting confirmatory FRI criteria were matched to 27 controls. Abundance ratios for more than 1000 proteins were measured in the 54 plasma samples. Seventy-three proteins were found to be increased or decreased in patients with FRI compared with those in matched controls (unadjusted t test P < 0.05). Thirty-two of these proteins were found in all 54 patient samples and underwent subsequent principal component analysis to reduce the dimensionality of the large proteomics dataset. A 3-component principal component analysis accounted for 45.7% of the variation in the dataset and had 88.9% specificity for the diagnosis of FRI. STRING protein-protein interaction network analysis of these 3 PCs revealed activation of the complement and coagulation cascades through the Reactome pathway database (false discovery rates <0.05). CONCLUSIONS: Proteomic analyses of plasma from patients with FRI demonstrate systemic activation of the complement and coagulation cascades. Further investigation along these lines may help to better understand the systemic response to FRI and improve diagnostic strategies using proteomics. LEVEL OF EVIDENCE: Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Fraturas Ósseas , Proteômica , Humanos , Estudos de Casos e Controles , Proteômica/métodos , Fraturas Ósseas/diagnóstico , Fraturas Ósseas/cirurgia
5.
Redox Biol ; 63: 102723, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146512

RESUMO

The retina is one of the highest oxygen-consuming tissues because visual transduction and light signaling processes require large amounts of ATP. Thus, because of the high energy demand, oxygen-rich environment, and tissue transparency, the eye is susceptible to excess production of reactive oxygen species (ROS) resulting in oxidative stress. Oxidative stress in the eye is associated with the development and progression of ocular diseases including cataracts, glaucoma, age-related macular degeneration, and diabetic retinopathy. ROS can modify and damage cellular proteins, but can also be involved in redox signaling. In particular, the thiol groups of cysteines can undergo reversible or irreversible oxidative post-translational modifications (PTMs). Identifying the redox-sensitive cysteines on a proteome-wide scale provides insight into those proteins that act as redox sensors or become irreversibly damaged upon exposure to oxidative stress. In this study, we profiled the redox proteome of the Drosophila eye under prolonged, high intensity blue light exposure and age using iodoacetamide isobaric label sixplex reagents (iodo-TMT) to identify changes in cysteine availability. Although redox metabolite analysis of the major antioxidant, glutathione, revealed similar ratios of its oxidized and reduced form in aged or light-stressed eyes, we observed different changes in the redox proteome under these conditions. Both conditions resulted in significant oxidation of proteins involved in phototransduction and photoreceptor maintenance but affected distinct targets and cysteine residues. Moreover, redox changes induced by blue light exposure were accompanied by a large reduction in light sensitivity that did not arise from a reduction in the photopigment level, suggesting that the redox-sensitive cysteines we identified in the phototransduction machinery might contribute to light adaptation. Our data provide a comprehensive description of the redox proteome of Drosophila eye tissue under light stress and aging and suggest how redox signaling might contribute to light adaptation in response to acute light stress.


Assuntos
Cisteína , Proteoma , Animais , Cisteína/metabolismo , Proteoma/metabolismo , Drosophila melanogaster/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/fisiologia , Oxirredução , Drosophila/metabolismo , Transdução de Sinal Luminoso , Oxigênio
6.
iScience ; 26(4): 106425, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37034982

RESUMO

Intracellular α-ketoglutarate is an indispensable substrate for the Jumonji family of histone demethylases (JHDMs) mediating most of the histone demethylation reactions. Since α-ketoglutarate is an intermediate of the tricarboxylic acid cycle and a product of transamination, its availability is governed by the metabolism of several amino acids. Here, we show that asparagine starvation suppresses global histone demethylation. This process is neither due to the change of expression of histone-modifying enzymes nor due to the change of intracellular levels of α-ketoglutarate. Rather, asparagine starvation reduces the intracellular pool of labile iron, a key co-factor for the JHDMs to function. Mechanistically, asparagine starvation suppresses the expression of the transferrin receptor to limit iron uptake. Furthermore, iron supplementation to the culture medium restores histone demethylation and alters gene expression to accelerate cell death upon asparagine depletion. These results suggest that suppressing iron-dependent histone demethylation is part of the cellular adaptive response to asparagine starvation.

7.
iScience ; 26(4): 106541, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37102148

RESUMO

Skeletal muscle dysfunction or reprogramming due to the effects of the cancer secretome is observed in multiple malignancies. Although mouse models are routinely used to study skeletal muscle defects in cancer, because of species specificity of certain cytokines/chemokines in the secretome, a human model system is required. Here, we establish simplified multiple skeletal muscle stem cell lines (hMuSCs), which can be differentiated into myotubes. Using single nuclei ATAC-seq (snATAC-seq) and RNA-seq (snRNA-seq), we document chromatin accessibility and transcriptomic changes associated with the transition of hMuSCs to myotubes. Cancer secretome accelerated stem to myotube differentiation, altered the alternative splicing machinery and increased inflammatory, glucocorticoid receptor, and wound healing pathways in hMuSCs. Additionally, cancer secretome reduced metabolic and survival pathway associated miR-486, AKT, and p53 signaling in hMuSCs. hMuSCs underwent myotube differentiation when engrafted into NSG mice and thus providing a humanized in vivo skeletal muscle model system to study cancer cachexia.

8.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902150

RESUMO

Calcium/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) regulates bone remodeling through its effects on osteoblasts and osteoclasts. However, its role in osteocytes, the most abundant bone cell type and the master regulator of bone remodeling, remains unknown. Here we report that the conditional deletion of CaMKK2 from osteocytes using Dentine matrix protein 1 (Dmp1)-8kb-Cre mice led to enhanced bone mass only in female mice owing to a suppression of osteoclasts. Conditioned media isolated from female CaMKK2-deficient osteocytes inhibited osteoclast formation and function in in vitro assays, indicating a role for osteocyte-secreted factors. Proteomics analysis revealed significantly higher levels of extracellular calpastatin, a specific inhibitor of calcium-dependent cysteine proteases calpains, in female CaMKK2 null osteocyte conditioned media, compared to media from female control osteocytes. Further, exogenously added non-cell permeable recombinant calpastatin domain I elicited a marked, dose-dependent inhibition of female wild-type osteoclasts and depletion of calpastatin from female CaMKK2-deficient osteocyte conditioned media reversed the inhibition of matrix resorption by osteoclasts. Our findings reveal a novel role for extracellular calpastatin in regulating female osteoclast function and unravel a novel CaMKK2-mediated paracrine mechanism of osteoclast regulation by female osteocytes.


Assuntos
Osteoclastos , Osteócitos , Animais , Feminino , Camundongos , Cálcio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Meios de Cultivo Condicionados/farmacologia , Osteoclastos/metabolismo , Osteócitos/metabolismo , Caracteres Sexuais
9.
Sci Rep ; 13(1): 377, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611042

RESUMO

Lysine methylation modulates the function of histone and non-histone proteins, and the enzymes that add or remove lysine methylation-lysine methyltransferases (KMTs) and lysine demethylases (KDMs), respectively-are frequently mutated and dysregulated in human diseases. Identification of lysine methylation sites proteome-wide has been a critical barrier to identifying the non-histone substrates of KMTs and KDMs and for studying functions of non-histone lysine methylation. Detection of lysine methylation by mass spectrometry (MS) typically relies on the enrichment of methylated peptides by pan-methyllysine antibodies. In this study, we use peptide microarrays to show that pan-methyllysine antibodies have sequence bias, and we evaluate how the differential selectivity of these reagents impacts the detection of methylated peptides in MS-based workflows. We discovered that most commercially available pan-Kme antibodies have an in vitro sequence bias, and multiple enrichment approaches provide the most comprehensive coverage of the lysine methylome. Overall, global lysine methylation proteomics with multiple characterized pan-methyllysine antibodies resulted in the detection of 5089 lysine methylation sites on 2751 proteins from two human cell lines, nearly doubling the number of reported lysine methylation sites in the human proteome.


Assuntos
Lisina , Proteoma , Humanos , Lisina/metabolismo , Proteoma/metabolismo , Epigenoma , Metilação , Peptídeos/metabolismo , Anticorpos/metabolismo
11.
Acta Neuropathol ; 144(3): 509-520, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35819518

RESUMO

Prion protein (PrP) aggregation and formation of PrP amyloid (APrP) are central events in the pathogenesis of prion diseases. In the dominantly inherited prion protein amyloidosis known as Gerstmann-Sträussler-Scheinker (GSS) disease, plaques made of PrP amyloid are present throughout the brain. The c.593t > c mutation in the prion protein gene (PRNP) results in a phenylalanine to serine amino acid substitution at PrP residue 198 (F198S) and causes the most severe amyloidosis among GSS variants. It has been shown that neurodegeneration in this disease is associated with the presence of extracellular APrP plaques and neuronal intracytoplasmic Tau inclusions, that have been shown to contain paired helical filaments identical to those found in Alzheimer disease. Using cryogenic electron microscopy (cryo-EM), we determined for the first time the structures of filaments of human APrP, isolated post-mortem from the brain of two symptomatic PRNP F198S mutation carriers. We report that in GSS (F198S) APrP filaments are composed of dimeric, trimeric and tetrameric left-handed protofilaments with their protomers sharing a common protein fold. The protomers in the cross-ß spines consist of 62 amino acids and span from glycine 80 to phenylalanine 141, adopting a previously unseen spiral fold with a thicker outer layer and a thinner inner layer. Each protomer comprises nine short ß-strands, with the ß1 and ß8 strands, as well as the ß4 and ß9 strands, forming a steric zipper. The data obtained by cryo-EM provide insights into the structural complexity of the PrP filament in a dominantly inherited human PrP amyloidosis. The novel findings highlight the urgency of extending our knowledge of the filaments' structures that may underlie distinct clinical and pathologic phenotypes of human neurodegenerative diseases.


Assuntos
Amiloidose , Doença de Gerstmann-Straussler-Scheinker , Príons , Amiloide/metabolismo , Amiloidose/metabolismo , Encéfalo/patologia , Microscopia Crioeletrônica , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Humanos , Fenilalanina/metabolismo , Placa Amiloide/patologia , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética , Príons/metabolismo , Subunidades Proteicas/metabolismo
12.
Mol Ther Nucleic Acids ; 28: 231-248, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35402076

RESUMO

miR-486 is a myogenic microRNA, and its reduced skeletal muscle expression is observed in muscular dystrophy. Transgenic overexpression of miR-486 using muscle creatine kinase promoter (MCK-miR-486) partially rescues muscular dystrophy phenotype. We had previously demonstrated reduced circulating and skeletal muscle miR-486 levels with accompanying skeletal muscle defects in mammary tumor models. To determine whether skeletal muscle miR-486 is functionally similar in dystrophies and cancer, we performed functional limitations and biochemical studies of skeletal muscles of MMTV-Neu mice that mimic HER2+ breast cancer and MMTV-PyMT mice that mimic luminal subtype B breast cancer and these mice crossed to MCK-miR-486 mice. miR-486 significantly prevented tumor-induced reduction in muscle contraction force, grip strength, and rotarod performance in MMTV-Neu mice. In this model, miR-486 reversed cancer-induced skeletal muscle changes, including loss of p53, phospho-AKT, and phospho-laminin alpha 2 (LAMA2) and gain of hnRNPA0 and SRSF10 phosphorylation. LAMA2 is a part of the dystrophin-associated glycoprotein complex, and its loss of function causes congenital muscular dystrophy. Complementing these beneficial effects on muscle, miR-486 indirectly reduced tumor growth and improved survival, which is likely due to systemic effects of miR-486 on production of pro-inflammatory cytokines such as IL-6. Thus, similar to dystrophy, miR-486 has the potential to reverse skeletal muscle defects and cancer burden.

13.
Sci Adv ; 8(2): eabh3375, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35020422

RESUMO

Preclinical studies of primary cancer cells are typically done after tumors are removed from patients or animals at ambient atmospheric oxygen (O2, ~21%). However, O2 concentrations in organs are in the ~3 to 10% range, with most tumors in a hypoxic or 1 to 2% O2 environment in vivo. Although effects of O2 tension on tumor cell characteristics in vitro have been studied, these studies are done only after tumors are first collected and processed in ambient air. Similarly, sensitivity of primary cancer cells to anticancer agents is routinely examined at ambient O2. Here, we demonstrate that tumors collected, processed, and propagated at physiologic O2 compared to ambient air display distinct differences in key signaling networks including LGR5/WNT, YAP, and NRF2/KEAP1, nuclear reactive oxygen species, alternative splicing, and sensitivity to targeted therapies. Therefore, evaluating cancer cells under physioxia could more closely recapitulate their physiopathologic status in the in vivo microenvironment.

14.
Sci Transl Med ; 13(615): eabh1486, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34644148

RESUMO

Discovery of small-molecule degraders that activate ubiquitin ligase­mediated ubiquitination and degradation of targeted oncoproteins in cancer cells has been an elusive therapeutic strategy. Here, we report a cancer cell­based drug screen of the NCI drug-like compounds library that enabled identification of small-molecule degraders of the small ubiquitin-related modifier 1 (SUMO1). Structure-activity relationship studies of analogs of the hit compound CPD1 led to identification of a lead compound HB007 with improved properties and anticancer potency in vitro and in vivo. A genome-scale CRISPR-Cas9 knockout screen identified the substrate receptor F-box protein 42 (FBXO42) of cullin 1 (CUL1) E3 ubiquitin ligase as required for HB007 activity. Using HB007 pull-down proteomics assays, we pinpointed HB007's binding protein as the cytoplasmic activation/proliferation-associated protein 1 (CAPRIN1). Biolayer interferometry and compound competitive immunoblot assays confirmed the selectivity of HB007's binding to CAPRIN1. When bound to CAPRIN1, HB007 induced the interaction of CAPRIN1 with FBXO42. FBXO42 then recruited SUMO1 to the CAPRIN1-CUL1-FBXO42 ubiquitin ligase complex, where SUMO1 was ubiquitinated in several of human cancer cells. HB007 selectively degraded SUMO1 in patient tumor­derived xenografts implanted into mice. Systemic administration of HB007 inhibited the progression of patient-derived brain, breast, colon, and lung cancers in mice and increased survival of the animals. This cancer cell­based screening approach enabled discovery of a small-molecule degrader of SUMO1 and may be useful for identifying other small-molecule degraders of oncoproteins.


Assuntos
Neoplasias , Proteína SUMO-1 , Animais , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Ubiquitinação
15.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33830945

RESUMO

One of the primary mechanisms of tumor cell immune evasion is the loss of antigenicity, which arises due to lack of immunogenic tumor antigens as well as dysregulation of the antigen processing machinery. In a screen for small-molecule compounds from herbal medicine that potentiate T cell-mediated cytotoxicity, we identified atractylenolide I (ATT-I), which substantially promotes tumor antigen presentation of both human and mouse colorectal cancer (CRC) cells and thereby enhances the cytotoxic response of CD8+ T cells. Cellular thermal shift assay (CETSA) with multiplexed quantitative mass spectrometry identified the proteasome 26S subunit non-ATPase 4 (PSMD4), an essential component of the immunoproteasome complex, as a primary target protein of ATT-I. Binding of ATT-I with PSMD4 augments the antigen-processing activity of immunoproteasome, leading to enhanced MHC-I-mediated antigen presentation on cancer cells. In syngeneic mouse CRC models and human patient-derived CRC organoid models, ATT-I treatment promotes the cytotoxicity of CD8+ T cells and thus profoundly enhances the efficacy of immune checkpoint blockade therapy. Collectively, we show here that targeting the function of immunoproteasome with ATT-I promotes tumor antigen presentation and empowers T cell cytotoxicity, thus elevating the tumor response to immunotherapy.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade Celular/efeitos dos fármacos , Imunoterapia , Lactonas/farmacologia , Neoplasias Experimentais/terapia , Sesquiterpenos/farmacologia , Animais , Antígenos de Neoplasias/genética , Células HCT116 , Humanos , Inibidores de Checkpoint Imunológico/farmacocinética , Imunidade Celular/genética , Lactonas/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Sesquiterpenos/farmacocinética
16.
Biomedicines ; 8(12)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322811

RESUMO

A growing body of evidence indicates that the levels of fucosylation correlate with breast cancer progression and contribute to metastatic disease. However, very little is known about the signaling and functional outcomes that are driven by fucosylation. We performed a global proteomic analysis of 4T1 metastatic mammary tumor cells in the presence and absence of a fucosylation inhibitor, 2-fluorofucose (2FF). Of significant interest, pathway analysis based on our results revealed a reduction in the NF-κB and TNF signaling pathways, which regulate the inflammatory response. NF-κB is a transcription factor that is pro-tumorigenic and a prime target in human cancer. We validated our results, confirming that treatment of 4T1 cells with 2FF led to a decrease in NF-κB activity through increased IκBα. Based on these observations, we conclude that fucosylation is an important post-translational modification that governs breast cancer cell signaling.

17.
Pancreas ; 49(8): 1044-1051, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32769857

RESUMO

OBJECTIVES: A proteomic discovery study was performed to determine if urine possesses a unique biosignature that could form the basis for a noninvasive test able to predict intraductal papillary mucinous neoplasm (IPMN) dysplasia. METHODS: Urine was collected from patients undergoing surgery for IPMN (72 low/moderate, 27 high-grade/invasive). Quantitative mass spectrometry-based proteomics was performed. Proteins of interest were identified by differential expression analysis followed by principal component analysis. RESULTS: Proteomics identified greater than 4800 urinary proteins. Low/moderate and high-grade/invasive IPMN were distinguished by 188 proteins (P < 0.05). Following principal component analysis and heatmap visualization, vitamin D binding protein (DBP), apolipoprotein A1 (APOA1), and alpha-1 antitrypsin (A1AT) were selected. The proteomic abundance of DBP (median [interquartile range]) was significantly higher for high-grade/invasive than for low/moderate IPMN (219,735 [128,882-269,943] vs. 112,295 [77,905-180,773] normalized reporter ion intensity units; P = 0.001). Similarly, APOA1 was more abundant in the high-grade/invasive than low/moderate groups (235,420 [144,933-371,247] vs 150,095 [103,419-236,591]; P = 0.0007) as was A1AT (567,514 [358,544-774,801] vs 358,393 [260,850-477,882]; P = 0.0006). CONCLUSIONS: Urinary DBP, APOA1, and A1AT represent potential biomarker candidates that may provide a noninvasive means of predicting IPMN dysplastic grade.


Assuntos
Adenocarcinoma Mucinoso/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Papilar/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteômica/métodos , Adenocarcinoma Mucinoso/cirurgia , Idoso , Biomarcadores Tumorais/urina , Carcinoma Ductal Pancreático/cirurgia , Carcinoma Papilar/cirurgia , Cromatografia Líquida/métodos , Análise por Conglomerados , Feminino , Humanos , Hiperplasia , Masculino , Pessoa de Meia-Idade , Pâncreas/metabolismo , Pâncreas/patologia , Pâncreas/cirurgia , Neoplasias Pancreáticas/cirurgia , Espectrometria de Massas em Tandem/métodos
18.
Sci Signal ; 12(610)2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796630

RESUMO

Deoxyhypusine synthase (DHPS) uses the polyamine spermidine to catalyze the hypusine modification of the mRNA translation factor eIF5A and promotes oncogenesis through poorly defined mechanisms. Because germline deletion of Dhps is embryonically lethal, its role in normal postnatal cellular function in vivo remains unknown. We generated a mouse model that enabled the inducible, postnatal deletion of Dhps specifically in postnatal islet ß cells, which function to maintain glucose homeostasis. Removal of Dhps did not have an effect under normal physiologic conditions. However, upon development of insulin resistance, which induces ß cell proliferation, Dhps deletion caused alterations in proteins required for mRNA translation and protein secretion, reduced production of the cell cycle molecule cyclin D2, impaired ß cell proliferation, and induced overt diabetes. We found that hypusine biosynthesis was downstream of protein kinase C-ζ and was required for c-Myc-induced proliferation. Our studies reveal a requirement for DHPS in ß cells to link polyamines to mRNA translation to effect facultative cellular proliferation and glucose homeostasis.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Lisina/análogos & derivados , Fatores de Iniciação de Peptídeos/metabolismo , Poliaminas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Idoso , Alelos , Animais , Proliferação de Células , Cruzamentos Genéticos , Ciclina D2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Feminino , Deleção de Genes , Homeostase , Humanos , Lisina/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ornitina Descarboxilase/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
19.
Mol Biochem Parasitol ; 232: 111203, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31381949

RESUMO

Toxoplasma gondii is a protozoan parasite that has a tremendous impact on human health and livestock. High seroprevalence among humans and other animals is facilitated by the conversion of rapidly proliferating tachyzoites into latent bradyzoites that are housed in tissue cysts, which allow transmission through predation. Epigenetic mechanisms contribute to the regulation of gene expression events that are crucial in both tachyzoites as well as their development into bradyzoites. Acetylation of histones is one of the critical histone modifications that is linked to active gene transcription. Unlike most early-branching eukaryotes, Toxoplasma possesses two GCN5 homologues, one of which, GCN5b, is essential for parasite viability. Surprisingly, GCN5b does not associate with most of the well-conserved proteins found in the GCN5 complexes of other eukaryotes. Of particular note is that GCN5b interacts with multiple putative transcription factors that have plant-like DNA-binding domains denoted as AP2. To understand the function of GCN5b and its role(s) in epigenetic gene regulation of stage switching, we performed co-immunoprecipitation of GCN5b under normal and bradyzoite induction conditions. We report the greatest resolution of the GCN5b complex to date under these various culture conditions. Moreover, reciprocal co-IPs were performed with distinct GCN5b-interacting AP2 factors (AP2IX-7 and AP2XII-4) to delineate the interactomes of each putative transcription factor. Our findings suggest that GCN5b is associated with at least two distinct complexes that are characterized by two different pairs of AP2 factors, and implicate up to four AP2 proteins to be involved with GCN5b-mediated gene regulation.


Assuntos
Histona Acetiltransferases/metabolismo , Lisina Acetiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/parasitologia , Fatores de Transcrição/metabolismo , Acetilação , Animais , Regulação da Expressão Gênica , Histona Acetiltransferases/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lisina Acetiltransferases/genética , Ligação Proteica , Proteínas de Protozoários/genética , Toxoplasma/enzimologia , Toxoplasma/genética , Fatores de Transcrição/genética
20.
Am J Physiol Endocrinol Metab ; 316(5): E749-E772, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645175

RESUMO

A goal of osteoporosis therapy is to restore lost bone with structurally sound tissue. Mice lacking the transcription factor nuclear matrix protein 4 (Nmp4, Zfp384, Ciz, ZNF384) respond to several classes of osteoporosis drugs with enhanced bone formation compared with wild-type (WT) animals. Nmp4-/- mesenchymal stem/progenitor cells (MSPCs) exhibit an accelerated and enhanced mineralization during osteoblast differentiation. To address the mechanisms underlying this hyperanabolic phenotype, we carried out RNA-sequencing and molecular and cellular analyses of WT and Nmp4-/- MSPCs during osteogenesis to define pathways and mechanisms associated with elevated matrix production. We determined that Nmp4 has a broad impact on the transcriptome during osteogenic differentiation, contributing to the expression of over 5,000 genes. Phenotypic anchoring of transcriptional data was performed for the hypothesis-testing arm through analysis of cell metabolism, protein synthesis and secretion, and bone material properties. Mechanistic studies confirmed that Nmp4-/- MSPCs exhibited an enhanced capacity for glycolytic conversion: a key step in bone anabolism. Nmp4-/- cells showed elevated collagen translation and secretion. The expression of matrix genes that contribute to bone material-level mechanical properties was elevated in Nmp4-/- cells, an observation that was supported by biomechanical testing of bone samples from Nmp4-/- and WT mice. We conclude that loss of Nmp4 increases the magnitude of glycolysis upon the metabolic switch, which fuels the conversion of the osteoblast into a super-secretor of matrix resulting in more bone with improvements in intrinsic quality.


Assuntos
Matriz Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Associadas à Matriz Nuclear/genética , Osteoblastos/metabolismo , Osteogênese/genética , Fatores de Transcrição/genética , Animais , Calcificação Fisiológica/genética , Colágeno/genética , Colágeno/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicólise/genética , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoporose/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA