Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 91(1): 21-35, 2001 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-11403881

RESUMO

Results from various surface sensitive characterization techniques suggest a model for the interaction of the piperidinopyrimidine dipyridamole (DIP)--known as a vasodilator and inhibitor of P-glycoprotein associated multidrug resistance of tumor cells--with phospholipid monolayers in which the drug is peripherally associated with the membrane, binding (up to) five phospholipids at a time. These multiple interactions are responsible for a very strong association of the drug with the lipid monolayer even at exceedingly low concentrations (approximately 0.2 mol%). Electrostatic interactions and hydrogen bonding are likely involved in the binding of DIP to DPPC. Cooperative effects among the lipids are invoked to explain the macroscopically measurable changes of lipid monolayer properties even when only one out of 100 DPPC molecules is directly associated with a DIP molecule. A reversal of the observed changes upon drug association with the membrane as the DIP concentration surpasses a threshold concentration (c(crit)approximately 0.5 mol%) may be explained by cooperativity in a different context, the self-aggregation of drug molecules. With its implications for the interaction of DIP with phospholipid films, this work provides a first approach to the explanation of the high sensitivity of cell membranes to piperidinopyrimidine drugs on a molecular level.


Assuntos
Dipiridamol/química , Fosfolipídeos/química , Ligação de Hidrogênio , Microscopia de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA