Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 98(5): 928-941, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30735592

RESUMO

Abscisic acid (ABA) receptors belong to the START domain superfamily, which encompasses ligand-binding proteins present in all kingdoms of life. START domain proteins contain a central binding pocket that, depending on the protein, can couple ligand binding to catalytic, transport or signaling functions. In Arabidopsis, the best characterized START domain proteins are the 14 PYR/PYL/RCAR ABA receptors, while the other members of the superfamily do not have assigned ligands. To address this, we used affinity purification of biotinylated proteins expressed transiently in Nicotiana benthamiana coupled to untargeted LC-MS to identify candidate binding ligands. We optimized this method using ABA-PYL interactions and show that ABA co-purifies with wild-type PYL5 but not a binding site mutant. The Kd of PYL5 for ABA is 1.1 µm, which suggests that the method has sufficient sensitivity for many ligand-protein interactions. Using this method, we surveyed a set of 37 START domain-related proteins, which resulted in the identification of ligands that co-purified with MLBP1 (At4G01883) or MLP165 (At1G35260). Metabolite identification and the use of authentic standards revealed that MLBP1 binds to monolinolenin, which we confirmed using recombinant MLBP1. Monolinolenin also co-purified with MLBP1 purified from transgenic Arabidopsis, demonstrating that the interaction occurs in a native context. Thus, deployment of this relatively simple method allowed us to define a protein-metabolite interaction and better understand protein-ligand interactions in plants.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a Ácido Graxo/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligantes , Ácidos Linolênicos/química , Ácidos Linolênicos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Transdução de Sinais
2.
Plant Mol Biol ; 84(6): 719-35, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24370935

RESUMO

C-5 DNA methylation is an essential mechanism controlling gene expression and developmental programs in a variety of organisms. Though the role of DNA methylation has been intensively studied in mammals and Arabidopsis, little is known about the evolution of this mechanism. The chromomethylase (CMT) methyltransferase family is unique to plants and was found to be involved in DNA methylation in Arabidopsis, maize and tobacco. The moss Physcomitrella patens, a model for early terrestrial plants, harbors a single homolog of the CMT protein family designated as PpCMT. Our phylogenetic analysis suggested that the CMT family is unique to embryophytes and its earliest known member PpCMT belongs to the CMT3 subfamily. Thus, P. patens may serve as a model to study the ancient functions of the CMT3 family. We have generated a ΔPpcmt deletion mutant which demonstrated that PpCMT is essential for P. patens protonema and gametophore development and is involved in CHG methylation as demonstrated at four distinct genomic loci. PpCMT protein accumulation pattern correlated with proliferating cells and was sub-localized to the nucleus as predicted from its function. Taken together, our results suggested that CHG DNA methylation mediated by CMT has been employed early in land plant evolution to control developmental programs during both the vegetative and reproductive haploid phases along the plant life cycle.


Assuntos
Bryopsida/enzimologia , DNA (Citosina-5-)-Metiltransferases/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Sequência de Aminoácidos , Evolução Biológica , Bryopsida/citologia , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Dosagem de Genes , Dados de Sequência Molecular , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência , Transgenes
3.
PLoS Biol ; 6(8): e194, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18700816

RESUMO

Parental genomic imprinting causes preferential expression of one of the two parental alleles. In mammals, differential sex-dependent deposition of silencing DNA methylation marks during gametogenesis initiates a new cycle of imprinting. Parental genomic imprinting has been detected in plants and relies on DNA methylation by the methyltransferase MET1. However, in contrast to mammals, plant imprints are created by differential removal of silencing marks during gametogenesis. In Arabidopsis, DNA demethylation is mediated by the DNA glycosylase DEMETER (DME) causing activation of imprinted genes at the end of female gametogenesis. On the basis of genetic interactions, we show that in addition to DME, the plant homologs of the human Retinoblastoma (Rb) and its binding partner RbAp48 are required for the activation of the imprinted genes FIS2 and FWA. This Rb-dependent activation is mediated by direct transcriptional repression of MET1 during female gametogenesis. We have thus identified a new mechanism required for imprinting establishment, outlining a new role for the Retinoblastoma pathway, which may be conserved in mammals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Impressão Genômica , Proteína do Retinoblastoma/genética , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , DNA (Citosina-5-)-Metiltransferases/biossíntese , Metilação de DNA , Regulação para Baixo , Epigênese Genética , Gametogênese , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/biossíntese , Humanos , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA