Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Pediatr Res ; 95(4): 931-940, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38066248

RESUMO

BACKGROUND: Lung inflammation and impaired alveolarization precede bronchopulmonary dysplasia (BPD). Glucocorticoids are anti-inflammatory and reduce ventilator requirements in preterm infants. However, high-dose glucocorticoids inhibit alveolarization. The effect of glucocorticoids on lung function and structure in preterm newborns exposed to antenatal inflammation is unknown. We hypothesise that postnatal low-dose dexamethasone reduces ventilator requirements, prevents inflammation and BPD-like lung pathology, following antenatal inflammation. METHODS: Pregnant ewes received intra-amniotic LPS (E.coli, 4 mg/mL) or saline at 126 days gestation; preterm lambs were delivered 48 h later. Lambs were randomised to receive either tapered intravenous dexamethasone (LPS/Dex, n = 9) or saline (LPS/Sal, n = 10; Sal/Sal, n = 9) commencing <3 h after birth. Respiratory support was gradually de-escalated, using a standardised protocol aimed at weaning from ventilation towards unassisted respiration. Tissues were collected at day 7. RESULTS: Lung morphology and mRNA levels for inflammatory mediators were measured. Respiratory support requirements were not different between groups. Histological analyses revealed higher tissue content and unchanged alveolarization in LPS/Sal compared to other groups. LPS/Dex lambs exhibited decreased markers of pulmonary inflammation compared to LPS/Sal. CONCLUSION: Tapered low-dose dexamethasone reduces the impact of antenatal LPS on ventilation requirements throughout the first week of life and reduces inflammation and pathological thickening of the preterm lung IMPACT: We are the first to investigate the combination of antenatal inflammation and postnatal dexamethasone therapy in a pragmatic study design, akin to contemporary neonatal care. We show that antenatal inflammation with postnatal dexamethasone therapy does not reduce ventilator requirements, but has beneficial maturational impacts on the lungs of preterm lambs at 7 days of life. Appropriate tapered postnatal dexamethasone dosing should be explored for extuabtion of oxygen-dependant neonates.


Assuntos
Displasia Broncopulmonar , Lipopolissacarídeos , Humanos , Recém-Nascido , Lactente , Animais , Ovinos , Feminino , Gravidez , Recém-Nascido Prematuro , Anti-Inflamatórios/farmacologia , Glucocorticoides/farmacologia , Pulmão , Inflamação , Displasia Broncopulmonar/prevenção & controle , Esteroides , Carneiro Doméstico , Dexametasona/farmacologia
2.
PLoS One ; 16(6): e0253456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34170941

RESUMO

BACKGROUND: Lung inflammation and impaired alveolarization are hallmarks of bronchopulmonary dysplasia (BPD). We hypothesize that human amnion epithelial cells (hAECs) are anti-inflammatory and reduce lung injury in preterm lambs born after antenatal exposure to inflammation. METHODS: Pregnant ewes received either intra-amniotic lipopolysaccharide (LPS, from E.coli 055:B5; 4mg) or saline (Sal) on day 126 of gestation. Lambs were delivered by cesarean section at 128 d gestation (term ~150 d). Lambs received intravenous hAECs (LPS/hAECs: n = 7; 30x106 cells) or equivalent volumes of saline (LPS/Sal, n = 10; or Sal/Sal, n = 9) immediately after birth. Respiratory support was gradually de-escalated, aimed at early weaning from mechanical ventilation towards unassisted respiration. Lung tissue was collected 1 week after birth. Lung morphology was assessed and mRNA levels for inflammatory mediators were measured. RESULTS: Respiratory support required by LPS/hAEC lambs was not different to Sal/Sal or LPS/Sal lambs. Lung tissue:airspace ratio was lower in the LPS/Sal compared to Sal/Sal lambs (P<0.05), but not LPS/hAEC lambs. LPS/hAEC lambs tended to have increased septation in their lungs versus LPS/Sal (P = 0.08). Expression of inflammatory cytokines was highest in LPS/hAECs lambs. CONCLUSIONS: Postnatal administration of a single dose of hAECs stimulates a pulmonary immune response without changing ventilator requirements in preterm lambs born after intrauterine inflammation.


Assuntos
Âmnio , Células Epiteliais , Lipopolissacarídeos/toxicidade , Pulmão , Pneumonia , Âmnio/imunologia , Âmnio/patologia , Animais , Animais Recém-Nascidos , Células Epiteliais/imunologia , Células Epiteliais/patologia , Células Epiteliais/transplante , Feminino , Xenoenxertos , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/imunologia , Pulmão/patologia , Masculino , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Pneumonia/patologia , Pneumonia/terapia , Ovinos
3.
Pediatr Res ; 88(1): 27-37, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32120374

RESUMO

BACKGROUND: Mechanical ventilation of preterm neonates is associated with neuroinflammation and an increased risk of adverse neurological outcomes. Human amnion epithelial cells (hAECs) have anti-inflammatory and regenerative properties. We aimed to determine if intravenous administration of hAECs to preterm lambs would reduce neuroinflammation and injury at 2 days of age. METHODS: Preterm lambs were delivered by cesarean section at 128-130 days' gestation (term is ~147 days) and either ventilated for 48 h or humanely killed at birth. Lambs received 3 mL surfactant (Curosurf) via endotracheal tube prior to delivery (either with or without 90 × 106 hAECs) and 3 mL intravenous phosphate-buffered saline (with or without 90 × 106 hAECs, consistent with intratracheal treatment) after birth. RESULTS: Ventilation increased microglial activation, total oligodendrocyte cell number, cell proliferation and blood-brain barrier permeability (P < 0.05, PBS + ventilation and hAEC + ventilation vs. control), but did not affect numbers of immature and mature oligodendrocytes. Ventilation reduced astrocyte and neuron survival (P < 0.05, PBS + ventilation and hAEC + ventilation vs. control). hAEC administration did not alter markers of neuroinflammation or injury within the white or gray matter. CONCLUSIONS: Mechanical ventilation for 48 h upregulated markers of neuroinflammation and injury in preterm lambs. Administration of hAECs did not affect markers of neuroinflammation or injury. IMPACT: Mechanical ventilation of preterm lambs for 48 h, in a manner consistent with contemporary neonatal intensive care, causes neuroinflammation, neuronal loss and pathological changes in oligodendrocyte and astrocyte survival consistent with evolving neonatal brain injury.Intravenous administration of hAECs immediately after birth did not affect neonatal cardiorespiratory function and markers of neuroinflammation or injury.Reassuringly, our findings in a translational large animal model demonstrate that intravenous hAEC administration to the preterm neonate is safe.Considering that hAECs are being used in phase 1 trials for the treatment of BPD in preterm infants, with future trials planned for neonatal neuroprotection, we believe these observations are highly relevant.


Assuntos
Âmnio/metabolismo , Encéfalo/patologia , Transplante de Células/métodos , Células Epiteliais/metabolismo , Inflamação , Animais , Animais Recém-Nascidos , Barreira Hematoencefálica , Proliferação de Células , Feminino , Substância Cinzenta/patologia , Humanos , Infusões Intravenosas , Masculino , Microglia/metabolismo , Oligodendroglia/metabolismo , Permeabilidade , Regeneração , Respiração Artificial , Ovinos , Substância Branca/patologia
4.
Pediatr Radiol ; 50(1): 142-145, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31440883

RESUMO

X-linked stapes gusher syndrome is a genetic form of deafness with distinct radiographic features on temporal bone CT. Hypothalamic hamartoma is a congenital glioneuronal anomaly of the hypothalamus. We report a potential association between these two rare anomalies that, to our knowledge, has not been reported. Two brothers presented with sensorineural hearing loss and almost identical inner ear and hypothalamic abnormalities, consistent with a diagnosis of X-linked stapes gusher syndrome and hypothalamic hamartoma. Genetic testing revealed identical mutations in the POU3F4 gene associated with X-linked stapes gusher syndrome. Furthermore, multiple vestibular diverticula were seen in both brothers, which have also not been reported with X-linked stapes gusher syndrome. This case suggests that POU3F4 mediated X-linked stapes gusher syndrome may also lead to multiple vestibular diverticula and hypothalamic hamartoma and, therefore, brain magnetic resonance imaging (MRI) could be considered in patients presenting with these inner ear findings.


Assuntos
Hamartoma/diagnóstico por imagem , Hamartoma/genética , Perda Auditiva Neurossensorial/genética , Doenças Hipotalâmicas/diagnóstico por imagem , Doenças Hipotalâmicas/genética , Doenças do Labirinto/diagnóstico por imagem , Doenças do Labirinto/genética , Fatores do Domínio POU/genética , Pré-Escolar , Divertículo/complicações , Divertículo/diagnóstico por imagem , Divertículo/genética , Orelha Interna/diagnóstico por imagem , Hamartoma/complicações , Perda Auditiva Neurossensorial/complicações , Humanos , Doenças Hipotalâmicas/complicações , Doenças do Labirinto/complicações , Imageamento por Ressonância Magnética/métodos , Masculino , Estribo/diagnóstico por imagem , Síndrome , Tomografia Computadorizada por Raios X/métodos
5.
Pediatr Res ; 86(2): 165-173, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30858474

RESUMO

BACKGROUND: Chorioamnionitis and fetal inflammation are principal causes of neuropathology detected after birth, particularly in very preterm infants. Preclinical studies show that umbilical cord blood (UCB) cells are neuroprotective, but it is uncertain if allogeneic UCB cells are a feasible early intervention for preterm infants. In contrast, mesenchymal stem cells (MSCs) are more readily accessible and show strong anti-inflammatory benefits. We aimed to compare the neuroprotective benefits of UCB versus MSCs in a large animal model of inflammation-induced preterm brain injury. We hypothesized that MSCs would afford greater neuroprotection. METHODS: Chronically instrumented fetal sheep at 0.65 gestation received intravenous lipopolysaccharide (150 ng; 055:B5, n = 8) over 3 consecutive days; or saline for controls (n = 8). Cell-treated animals received 108 UCB mononuclear cells (n = 7) or 107 umbilical cord MSCs (n = 8), intravenously, 6 h after the final lipopolysaccharide dose. Seven days later, cerebrospinal fluid and brain tissue was collected for analysis. RESULTS: Lipopolysaccharide induced neuroinflammation and apoptosis, and reduced the number of mature oligodendrocytes. MSCs reduced astrogliosis, but UCB did not have the same effect. UCB significantly decreased cerebral apoptosis and protected mature myelinating oligodendrocytes, but MSCs did not. CONCLUSION: UCB appears to better protect white matter development in the preterm brain in response to inflammation-induced brain injury in fetal sheep.


Assuntos
Astrócitos/patologia , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/terapia , Sangue Fetal/citologia , Gliose/fisiopatologia , Inflamação/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Animais Recém-Nascidos , Apoptose , Morte Celular , Modelos Animais de Doenças , Feminino , Humanos , Leucócitos Mononucleares/citologia , Lipopolissacarídeos , Masculino , Neuroproteção , Oligodendroglia/citologia , Ovinos , Substância Branca/patologia
6.
J Appl Physiol (1985) ; 126(1): 44-50, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382807

RESUMO

Erythropoietin (EPO) is being trialled in preterm infants to reduce brain injury, but high doses increase lung injury in ventilated preterm lambs. We aimed to determine whether early administration of lower doses of EPO could reduce ventilation-induced lung injury and systemic inflammation in preterm lambs. Ventilation was initiated in anaesthetized preterm lambs [125 ± 1 (SD) days gestation] using an injurious strategy for the first 15 min. Lambs were subsequently ventilated with a protective strategy for a total of 2 h. Lambs were randomized to receive either intravenous saline (Vent; n = 7) or intravenous 300 ( n = 5), 1,000 (EPO1000; n = 5), or 3,000 (EPO3000; n = 5) IU/kg of human recombinant EPO via an umbilical vein. Lung tissue was collected for molecular and histological assessment of inflammation and injury and compared with unventilated control lambs (UVC; n = 8). All ventilated groups had similar blood gas and ventilation parameters, but EPO1000 lambs had a lower fraction of inspired oxygen requirement and lower alveolar-arterial difference in oxygen. Vent and EPO lambs had increased lung interleukin (IL)-1ß, IL-6, and IL-8 mRNA, early lung injury genes connective tissue growth factor, early growth response protein 1, and cysteine-rich 61, and liver serum amyloid A3 mRNA compared with UVCs; no difference was observed between Vent and EPO groups. Histological lung injury was increased in Vent and EPO groups compared with UVCs, but EPO3000 lambs had increased lung injury scores compared with VENT only. Early low-doses of EPO do not exacerbate ventilation-induced lung inflammation and injury and do not provide any short-term respiratory benefit. High doses (≥3,000 IU/kg) likely exacerbate lung inflammation and injury in ventilated preterm lambs. NEW & NOTEWORTHY Trials are ongoing to assess the efficacy of erythropoietin (EPO) to provide neuroprotection for preterm infants. However, high doses of EPO increase ventilation-induced lung injury (VILI) in preterm lambs. We investigated whether early lower doses of EPO may reduce VILI. We found that lower doses did not reduce, but did not increase, VILI, while high doses (≥3,000 IU/kg) increase VILI. Therefore, lower doses of EPO should be used in preterm infants, particularly those receiving respiratory support.


Assuntos
Eritropoetina/efeitos adversos , Respiração Artificial/efeitos adversos , Lesão Pulmonar Induzida por Ventilação Mecânica/induzido quimicamente , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Eritropoetina/administração & dosagem , Eritropoetina/sangue , Inflamação/etiologia , Inflamação/metabolismo , Fígado/metabolismo , Pulmão/patologia , Ovinos , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
8.
PLoS One ; 12(3): e0173572, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28346529

RESUMO

Ventilation of preterm neonates causes pulmonary inflammation that can contribute to lung injury, propagate systemically and result in long-term disease. Modulation of this initial response may reduce lung injury and its sequelae. We aimed to determine the effect of human amnion epithelial cells (hAECs) on immune activation and lung injury in preterm neonatal lambs. Preterm lambs received intratracheal hAECs (90x106) or vehicle, prior to 2 h of mechanical ventilation. Within 5 min of ventilation onset, lambs also received intravenous hAECs (90x106) or vehicle. Lung histology, bronchoalveolar lavage (BAL) cell phenotypes, and cytokine profiles were examined after 2 h of ventilation, and in unventilated controls. Histological indices of lung injury were higher than control, in vehicle-treated ventilated lambs but not in hAEC-treated ventilated lambs. Ventilation-induced pulmonary leukocyte recruitment was greater in hAEC-treated lambs than in vehicle-treated lambs. Lung IL-1ß and IL-6 mRNA expression was higher in vehicle- and hAEC-treated ventilated lambs than in controls but IL-8 mRNA levels were greater than control only in vehicle-treated ventilated lambs. Numbers of CD44+ and CD21+ lymphocytes and macrophages from the lungs were altered in vehicle- and hAEC-treated ventilated lambs. Numbers of CD8+ macrophages were lower in hAEC-treated ventilated lambs than in vehicle-treated ventilated lambs. Indices of systemic inflammation were not different between vehicle- and hAEC-treated lambs. Human amnion epithelial cells modulate the pulmonary inflammatory response to ventilation in preterm lambs, and reduce acute lung injury. Immunomodulatory effects of hAECs reduce lung injury in preterm neonates and may protect against longer-term respiratory disease.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/terapia , Âmnio/citologia , Células Epiteliais/transplante , Pneumonia/etiologia , Pneumonia/terapia , Respiração Artificial/efeitos adversos , Lesão Pulmonar Aguda/imunologia , Âmnio/imunologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/imunologia , Feminino , Humanos , Recém-Nascido Prematuro , Pneumonia/imunologia , Gravidez , Ventilação Pulmonar , Carneiro Doméstico
9.
Paediatr Respir Rev ; 23: 72-77, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27856214

RESUMO

Intrauterine inflammation, or chorioamnionitis, is a major contributor to preterm birth. Prematurity per se is associated with considerable morbidity and mortality resulting from lung immaturity but exposure to chorioamnionitis reduces the risk of neonatal respiratory distress syndrome (RDS) in preterm infants. Animal experiments have identified that an increase in pulmonary surfactant production by the preterm lungs likely underlies this decreased risk of RDS in infants exposed to chorioamnionitis. Further animal experimentation has shown that infectious or inflammatory agents in amniotic fluid exert their effects on lung development by direct effects within the developing respiratory tract, and probably not by systemic pathways. Differences in the effects of intrauterine inflammation and glucocorticoids demonstrate that canonical glucocorticoid-mediated lung maturation is not responsible for inflammation-induced changes in lung development. Animal experimentation is identifying alternative lung maturational pathways, and transgenic animals and cell culture techniques will allow identification of novel mechanisms of lung maturation that may lead to new treatments for the prevention of RDS.


Assuntos
Corioamnionite/metabolismo , Pulmão , Pneumonia , Síndrome do Desconforto Respiratório do Recém-Nascido , Animais , Descoberta de Drogas , Feminino , Idade Gestacional , Glucocorticoides/metabolismo , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pulmão/fisiopatologia , Pneumonia/complicações , Pneumonia/metabolismo , Pneumonia/fisiopatologia , Gravidez , Nascimento Prematuro/etiologia , Nascimento Prematuro/metabolismo , Nascimento Prematuro/fisiopatologia , Prostaglandinas/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/etiologia , Síndrome do Desconforto Respiratório do Recém-Nascido/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/fisiopatologia , Síndrome do Desconforto Respiratório do Recém-Nascido/prevenção & controle
10.
Clin Sci (Lond) ; 129(8): 769-84, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26223841

RESUMO

Cardiovascular disease continues to be the leading cause of global morbidity and mortality. Traditional risk factors account for only part of the attributable risk. The origins of atherosclerosis are in early life, a potential albeit largely unrecognized window of opportunity for early detection and treatment of subclinical cardiovascular disease. There are robust epidemiological data indicating that poor intrauterine growth and/or prematurity, and perinatal factors such as maternal hypercholesterolaemia, smoking, diabetes and obesity, are associated with adverse cardiovascular intermediate phenotypes in childhood and adulthood. Many of these early-life risk factors result in a heightened inflammatory state. Inflammation is a central mechanism in the development of atherosclerosis and cardiovascular disease, but few studies have investigated the role of overt perinatal infection and inflammation (chorioamnionitis) as a potential contributor to cardiovascular risk. Limited evidence from human and experimental models suggests an association between chorioamnionitis and cardiac and vascular dysfunction. Early life inflammatory events may be an important mechanism in the early development of cardiovascular risk and may provide insights into the associations between perinatal factors and adult cardiovascular disease. This review aims to summarise current data on the early life origins of atherosclerosis and cardiovascular disease, with particular focus on perinatal inflammation.


Assuntos
Aterosclerose/etiologia , Corioamnionite , Doenças do Recém-Nascido , Inflamação/complicações , Animais , Feminino , Humanos , Recém-Nascido , Gravidez
11.
Dev Neurosci ; 37(4-5): 338-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25720586

RESUMO

BACKGROUND: Preterm infants can be inadvertently exposed to high tidal volumes (VT) during resuscitation in the delivery room due to limitations of available equipment. High VT ventilation of preterm lambs produces cerebral white matter (WM) pathology similar to that observed in preterm infants who develop cerebral palsy. We hypothesized that human amnion epithelial cells (hAECs), which have anti-inflammatory and regenerative properties, would reduce ventilation-induced WM pathology in neonatal late preterm lamb brains. METHODS: Two groups of lambs (0.85 gestation) were used, as follows: (1) ventilated lambs (Vent; n = 8) were ventilated using a protocol that induces injury (VT targeting 15 ml/kg for 15 min, with no positive end-expiratory pressure) and were then maintained for another 105 min, and (2) ventilated + hAECs lambs (Vent+hAECs; n = 7) were similarly ventilated but received intravenous and intratracheal administration of 9 × 10(7) hAECs (18 × 10(7) hAECs total) at birth. Oxygenation and ventilation parameters were monitored in real time; cerebral oxygenation was measured using near-infrared spectroscopy. qPCR (quantitative real-time PCR) and immunohistochemistry were used to assess inflammation, vascular leakage and astrogliosis in both the periventricular and subcortical WM of the frontal and parietal lobes. An unventilated control group (UVC; n = 5) was also used for qPCR analysis of gene expression. Two-way repeated measures ANOVA was used to compare physiological data. Student's t test and one-way ANOVA were used for immunohistological and qPCR data comparisons, respectively. RESULTS: Respiratory parameters were not different between groups. Interleukin (IL)-6 mRNA levels in subcortical WM were lower in the Vent+hAECs group than the Vent group (p = 0.028). IL-1ß and IL-6 mRNA levels in periventricular WM were higher in the Vent+hAECs group than the Vent group (p = 0.007 and p = 0.001, respectively). The density of Iba-1-positive microglia was lower in the subcortical WM of the parietal lobes (p = 0.010) in the Vent+hAECs group but not in the periventricular WM. The number of vessels in the WM of the parietal lobe exhibiting protein extravasation was lower (p = 0.046) in the Vent+hAECs group. Claudin-1 mRNA levels were higher in the periventricular WM (p = 0.005). The density of GFAP-positive astrocytes was not different between groups. CONCLUSIONS: Administration of hAECs at the time of birth alters the effects of injurious ventilation on the preterm neonatal brain. Further studies are required to understand the regional differences in the effects of hAECs on ventilation-induced WM pathology and their net effect on the developing brain.


Assuntos
Âmnio/citologia , Células Epiteliais/transplante , Leucoencefalopatias/prevenção & controle , Respiração Artificial/efeitos adversos , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Humanos , Leucoencefalopatias/etiologia , Leucoencefalopatias/imunologia , Leucoencefalopatias/metabolismo , Gravidez , Nascimento Prematuro , Ovinos
12.
PLoS One ; 9(11): e112402, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25379714

RESUMO

BACKGROUND: The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. METHODS: Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. RESULTS: LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups. CONCLUSIONS: Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed to chorioamnionitis.


Assuntos
Lesões Encefálicas/fisiopatologia , Corioamnionite/fisiopatologia , Lesão Pulmonar/fisiopatologia , Nascimento Prematuro/fisiopatologia , Respiração Artificial/métodos , Doenças dos Ovinos/fisiopatologia , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Lesões Encefálicas/veterinária , Corioamnionite/veterinária , Feminino , Expressão Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Hemodinâmica/fisiologia , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-6/genética , Interleucina-8/genética , Lesão Pulmonar/veterinária , Gravidez , Nascimento Prematuro/veterinária , Respiração Artificial/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ovinos
13.
Stem Cell Res Ther ; 5(5): 107, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25189170

RESUMO

INTRODUCTION: Preterm newborns often require mechanical respiratory support that can result in ventilation-induced lung injury (VILI), despite exogenous surfactant treatment. Human amnion epithelial cells (hAECs) reduce lung inflammation and resultant abnormal lung development in preterm animals; co-administration with surfactant is a potential therapeutic strategy. We aimed to determine whether hAECs remain viable and maintain function after combination with surfactant. METHODS: hAECs were incubated in surfactant (Curosurf) or phosphate-buffered saline (PBS) for 30 minutes at 37°C. Cell viability, phenotype (by flow cytometry), inhibition of T-cell proliferative responses and differentiation into lung epithelium-like cells (assessed with immunohistochemical staining of surfactant protein (SP)-A) were investigated. RESULTS: Cell viability and apoptosis of hAECs were not altered by surfactant, and hAEC phenotype was not altered. hAECs maintained expression of epithelial cell adhesion molecule (EpCAM) and human leukocyte antigen (HLA)-ABC after surfactant exposure. Expression of HLA-DR, CD80 and CD86 was not increased. Immunosuppression of T cells by hAECs was not altered by surfactant. hAEC differentiation into lung epithelium-like cells was equivalent after exposure to PBS or surfactant, and SP-A expression was equivalent. CONCLUSION: Surfactant exposure does not alter viability or function of hAECs. Thus a combination therapy of hAECs and surfactant may be an efficacious therapy to ameliorate or prevent preterm lung disease.


Assuntos
Âmnio/citologia , Surfactantes Pulmonares/farmacologia , Âmnio/efeitos dos fármacos , Âmnio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Citometria de Fluxo , Humanos , Recém-Nascido , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Fosfolipídeos/farmacologia , Gravidez , Surfactantes Pulmonares/metabolismo
14.
J Physiol ; 592(9): 1993-2002, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24591575

RESUMO

Ventilation-induced lung injury (VILI) of preterm neonates probably contributes to the pathogenesis of bronchopulmonary dysplasia (BPD). Erythropoietin (EPO) has been suggested as a therapy for BPD. The aim of this study was to determine whether prophylactic administration of EPO reduces VILI in preterm newborn lambs. Lambs at 126 days of gestation (term is 147 days) were delivered and ventilated with a high tidal volume strategy for 15 min to cause lung injury, then received gentle ventilation until 2 h of age. Lambs were randomized to receive intravenous EPO (5000 IU kg(-1): Vent+EPO; n = 6) or phosphate-buffered saline (Vent; n = 7) soon after birth: unventilated controls (UVC; n = 8) did not receive ventilation or any treatment. Physiological parameters were recorded throughout the experimental procedure. Samples of lung were collected for histological and molecular assessment of inflammation and injury. Samples of liver were collected to assess the systemic acute phase response. Vent+EPO lambs received higher F IO 2, P aO 2 and oxygenation during the first 10 min than Vent lambs. There were no differences in physiological indices beyond this time. Total lung injury score, airway wall thickness, inflammation and haemorrhage were higher in Vent+EPO lambs than in Vent lambs. Lung inflammation and early markers of lung and systemic injury were elevated in ventilated lambs relative to unventilated lambs; EPO administration further increased lung inflammation and markers of lung and systemic injury. Prophylactic EPO exacerbates VILI, which may increase the incidence and severity of long-term respiratory disease. More studies are required before EPO can be used for lung protection in preterm infants.


Assuntos
Eritropoetina/efeitos adversos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/etiologia , Pneumonia/induzido quimicamente , Pneumonia/etiologia , Respiração Artificial/efeitos adversos , Animais , Animais Recém-Nascidos , Eritropoetina/administração & dosagem , Feminino , Humanos , Lesão Pulmonar/patologia , Pneumonia/patologia , Gravidez , Distribuição Aleatória , Carneiro Doméstico
15.
Cytotherapy ; 15(8): 1021-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23643416

RESUMO

BACKGROUND AIMS: Human amnion epithelial cells (hAECs) prevent pulmonary inflammation and injury in fetal sheep exposed to intrauterine lipopolysaccharide. We hypothesized that hAECs would similarly mitigate hyperoxia-induced neonatal lung injury. METHODS: Newborn mouse pups were randomized to either normoxia (inspired O2 content (FiO2) = 0.21, n = 60) or hyperoxia (FiO2 = 0.85, n = 57). On postnatal days (PND) 5, 6 and 7, hAECs or sterile saline (control) was administered intraperitoneally. All animals were assessed at PND 14. RESULTS: Hyperoxia was associated with lung inflammation, alveolar simplification and reduced postnatal growth. Administration of hAECs to hyperoxia-exposed mice normalized body weight and significantly attenuated some aspects of hyperoxia-induced lung injury (mean linear intercept and septal crest density) and inflammation (interleukin-1α, interleukin-6, transforming growth factor-ß and platelet-derived growth factor-ß). However, hAECs did not significantly alter changes to alveolar airspace volume, septal tissue volume, tissue-to-airspace ratio, collagen content or leukocyte infiltration induced by hyperoxia. CONCLUSIONS: Intraperitoneal administration of hAECs to neonatal mice partially reduced hyperoxia-induced lung inflammation and structural lung damage. These observations suggest that hAECs may be a potential therapy for neonatal lung disease.


Assuntos
Âmnio/citologia , Células Epiteliais/citologia , Células Epiteliais/transplante , Hiperóxia/complicações , Lesão Pulmonar/etiologia , Lesão Pulmonar/terapia , Animais , Células Cultivadas , Feminino , Humanos , Oxigenoterapia Hiperbárica , Recém-Nascido , Interleucina-1alfa/genética , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Derivado de Plaquetas/genética , Gravidez , RNA Mensageiro/biossíntese , Fator de Crescimento Transformador beta/genética
16.
Dev Neurosci ; 35(2-3): 272-82, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23571644

RESUMO

Intrauterine infection, such as occurs in chorioamnionitis, is a principal cause of preterm birth and is a strong risk factor for neurological morbidity and cerebral palsy. This study aims to examine whether human amnion epithelial cells (hAECs) can be used as a potential therapeutic agent to reduce brain injury induced by intra-amniotic administration of lipopolysaccharide (LPS) in preterm fetal sheep. Pregnant ewes underwent surgery at approximately 110 days of gestation (term is approx. 147 days) for implantation of catheters into the amniotic cavity, fetal trachea, carotid artery and jugular vein. LPS was administered at 117 days; hAECs were labeled with carboxyfluorescein succinimidyl ester and administered at 0, 6 and 12 h, relative to LPS administration, into the fetal jugular vein, trachea or both. Control fetuses received an equivalent volume of saline. Brains were collected 7 days later for histological assessment of brain injury. Microglia (Iba-1-positive cells) were present in the brain of all fetuses and were significantly increased in the cortex, subcortical and periventricular white matter in fetuses that received LPS, indicative of inflammation. Inflammation was reduced in fetuses that received hAECs. In LPS fetuses, the number of TUNEL-positive cells was significantly elevated in the cortex, periventricular white matter, subcortical white matter and hippocampus compared with controls, and reduced in fetuses that received hAECs in the cortex and periventricular white matter. Within the fetal brains studied there was a significant positive correlation between the number of Iba-1-immunoreactive cells and the number of TUNEL-positive cells (R(2) = 0.19, p < 0.001). The administration of hAECs protects the developing brain when administered concurrently with the initiation of intrauterine inflammation.


Assuntos
Âmnio/citologia , Lesões Encefálicas/etiologia , Lesões Encefálicas/prevenção & controle , Corioamnionite/patologia , Células Epiteliais/transplante , Animais , Lesões Encefálicas/patologia , Corioamnionite/imunologia , Corioamnionite/metabolismo , Citocinas/análise , Citocinas/biossíntese , Modelos Animais de Doenças , Feminino , Feto , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Gravidez , Carneiro Doméstico
18.
J Pregnancy ; 2013: 412831, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533760

RESUMO

Preterm birth is a major cause of perinatal mortality and long-term morbidity. Chorioamnionitis is a common cause of preterm birth. Clinical chorioamnionitis, characterised by maternal fever, leukocytosis, tachycardia, uterine tenderness, and preterm rupture of membranes, is less common than subclinical/histologic chorioamnionitis, which is asymptomatic and defined by inflammation of the chorion, amnion, and placenta. Chorioamnionitis is often associated with a fetal inflammatory response. The fetal inflammatory response syndrome (FIRS) is defined by increased systemic inflammatory cytokine concentrations, funisitis, and fetal vasculitis. Clinical and epidemiological studies have demonstrated that FIRS leads to poor cardiorespiratory, neurological, and renal outcomes. These observations are further supported by experimental studies that have improved our understanding of the mechanisms responsible for these outcomes. This paper outlines clinical and experimental studies that have improved our current understanding of the mechanisms responsible for chorioamnionitis-induced preterm birth and explores the cellular and physiological mechanisms underlying poor cardiorespiratory, neural, retinal, and renal outcomes observed in preterm infants exposed to chorioamnionitis.


Assuntos
Corioamnionite , Deficiências do Desenvolvimento/etiologia , Nascimento Prematuro/etiologia , Animais , Displasia Broncopulmonar/etiologia , Modelos Animais de Doenças , Feminino , Humanos , Recém-Nascido , Lipopolissacarídeos/toxicidade , Gravidez , Complicações Infecciosas na Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Coelhos , Ratos , Síndrome do Desconforto Respiratório do Recém-Nascido/etiologia , Roedores , Ovinos , Síndrome de Resposta Inflamatória Sistêmica/etiologia
19.
Pediatrics ; 130(4): 727-37, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22945412

RESUMO

Bronchopulmonary dysplasia (BPD) is a major cause of substantial lifelong morbidity in preterm infants. Despite a better understanding of the pathophysiology of BPD and significant research effort into its management, there remains today no effective treatment. Cell-based therapy is a novel approach that offers much promise in the prevention and treatment of BPD. Recent research supports a therapeutic role for cell transplantation in the management of a variety of acute and chronic adult and childhood lung diseases, with potential of such therapy to reduce inflammation and prevent acute lung injury. However, considerable uncertainties remain regarding cell therapies before they can be established as safe and effective clinical treatments for BPD. This review summarizes the current literature investigating cell therapies in lung disease, with particular focus on the various types of cells available and their specific properties in the context of a future therapy for BPD.


Assuntos
Displasia Broncopulmonar/cirurgia , Transplante de Células-Tronco/métodos , Humanos , Recém-Nascido
20.
Clin Exp Pharmacol Physiol ; 39(9): 824-30, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22816773

RESUMO

1. Intrauterine infection or inflammation is common in cases of preterm birth. Preterm infants are at risk of acute respiratory distress as a result of lung immaturity; evidence of exposure to infection and/or inflammation before birth is associated with a reduced risk of neonatal respiratory distress syndrome (RDS). Experimentally induced intrauterine inflammation or infection in sheep causes a precocious increase in pulmonary surfactant in the preterm lungs that improves preterm lung function, consistent with the reduced risk of RDS in human infants exposed to infection and/or inflammation before birth. 2. The effects of intrauterine inflammation on fetal lung development appear to result from direct action of proinflammatory stimuli within the lungs rather than by systemic signals, such as the classical glucocorticoid-mediated lung maturation pathway. However, paracrine and/or autocrine production and/or metabolism of glucocorticoids in fetal lung tissue may occur as a result of inflammation-induced changes in the expression of 11ß-hydroxysteroid dehydrogenase (types 1 and 2). 3. Likely candidates that mediate inflammation-induced surfactant production by the preterm lung include prostaglandin E2 and/or other arachidonic acid metabolites. Intrauterine inflammation induces the expression of enzymes responsible for prostaglandin production in fetal lung tissue. Inhibition of prostaglandin production prevents, at least in part, the effects of inflammation on fetal lungs. 4. Our experiments are identifying mechanisms of surfactant production by the preterm lungs that may be exploited as novel therapies for preventing respiratory distress in preterm infants. Elucidation of the effects of inflammation on the fetal lungs and other organs will allow more refined approaches to the care of preterm infants exposed to inflammation in utero.


Assuntos
Corioamnionite/fisiopatologia , Endometrite/fisiopatologia , Pulmão/embriologia , Organogênese , Complicações Infecciosas na Gravidez/fisiopatologia , Nascimento Prematuro/etiologia , Corticosteroides/uso terapêutico , Animais , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/prevenção & controle , Corioamnionite/imunologia , Corioamnionite/microbiologia , Endometrite/imunologia , Endometrite/microbiologia , Feminino , Humanos , Hidrocortisona/metabolismo , Recém-Nascido , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/fisiopatologia , Organogênese/efeitos dos fármacos , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/microbiologia , Nascimento Prematuro/imunologia , Nascimento Prematuro/metabolismo , Nascimento Prematuro/fisiopatologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Prostaglandinas/metabolismo , Surfactantes Pulmonares/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/etiologia , Síndrome do Desconforto Respiratório do Recém-Nascido/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA