Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Immunother Cancer ; 12(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580330

RESUMO

BACKGROUND: Initiation of antitumor immunity is reliant on the stimulation of dendritic cells (DCs) to present tumor antigens to naïve T cells and generate effector T cells that can kill cancer cells. Induction of immunogenic cell death after certain types of cytotoxic anticancer therapies can stimulate T cell-mediated immunity. However, cytotoxic therapies simultaneously activate multiple types of cellular stress and programmed cell death; hence, it remains unknown what types of cancer cell death confer superior antitumor immunity. METHODS: Murine cancer cells were engineered to activate apoptotic or pyroptotic cell death after Dox-induced expression of procell death proteins. Cell-free supernatants were collected to measure secreted danger signals, cytokines, and chemokines. Tumors were formed by transplanting engineered tumor cells to specifically activate apoptosis or pyroptosis in established tumors and the magnitude of immune response measured by flow cytometry. Tumor growth was measured using calipers to estimate end point tumor volumes for Kaplan-Meier survival analysis. RESULTS: We demonstrated that, unlike apoptosis, pyroptosis induces an immunostimulatory secretome signature. In established tumors pyroptosis preferentially activated CD103+ and XCR1+ type I conventional DCs (cDC1) along with a higher magnitude and functionality of tumor-specific CD8+ T cells and reduced number of regulatory T cells within the tumor. Depletion of cDC1 or CD4+ and CD8+ T cells ablated the antitumor response leaving mice susceptible to a tumor rechallenge. CONCLUSION: Our study highlights that distinct types of cell death yield varying immunotherapeutic effect and selective activation of pyroptosis can be used to potentiate multiple aspects of the anticancer immunity cycle.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Piroptose , Células Dendríticas , Citocinas/metabolismo
2.
J Immunother Cancer ; 11(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36958764

RESUMO

BACKGROUND: Transgenes deliver therapeutic payloads to improve oncolytic virus immunotherapy. Transgenes encoded within oncolytic viruses are designed to be highly transcribed, but protein synthesis is often negatively affected by viral infection, compromising the amount of therapeutic protein expressed. Studying the oncolytic herpes simplex virus-1 (HSV1), we found standard transgene mRNAs to be suboptimally translated in infected cells. METHODS: Using RNA-Seq reads, we determined the transcription start sites and 5'leaders of HSV1 genes and uncovered the US11 5'leader to confer superior activity in translation reporter assays. We then incorporated this 5'leader into GM-CSF expression cassette in oncolytic HSV1 and compared the translationally adapted oncolytic virus with the conventional, leaderless, virus in vitro and in mice. RESULTS: Inclusion of the US11 5'leader in the GM-CSF transgene incorporated into HSV1 boosted translation in vitro and in vivo. Importantly, treatment with US11 5'leader-GM-CSF oncolytic HSV1 showed superior antitumor immune activity and improved survival in a syngeneic mouse model of colorectal cancer as compared with leaderless-GM-CSF HSV1. CONCLUSIONS: Our study demonstrates the therapeutic value of identifying and integrating platform-specific cis-acting sequences that confer increased protein synthesis on transgene expression.


Assuntos
Herpesvirus Humano 1 , Vírus Oncolíticos , Animais , Camundongos , Herpesvirus Humano 1/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Vírus Oncolíticos/genética , Transgenes , Biossíntese de Proteínas
3.
Cancers (Basel) ; 15(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36831636

RESUMO

Immunogenic cell death (ICD) can switch immunologically "cold" tumors "hot", making them sensitive to immune checkpoint inhibitor (ICI) therapy. Many therapeutic platforms combine multiple modalities such as oncolytic viruses (OVs) and low-dose chemotherapy to induce ICD and improve prognostic outcomes. We previously detailed many unique properties of oncolytic bovine herpesvirus type 1 (oBHV) that suggest widespread clinical utility. Here, we show for the first time, the ability of oBHV monotherapy to induce bona fide ICD and tumor-specific activation of circulating CD8+ T cells in a syngeneic murine model of melanoma. The addition of low-dose mitomycin C (MMC) was necessary to fully synergize with ICI through early recruitment of CD8+ T cells and reduced infiltration of highly suppressive PD-1+ Tregs. Cytokine and gene expression analyses within treated tumors suggest that the addition of MMC to oBHV therapy shifts the immune response from predominantly anti-viral, as evidenced by a high level of interferon-stimulated genes, to one that stimulates myeloid cells, antigen presentation and adaptive processes. Collectively, these data provide mechanistic insights into how oBHV-mediated therapy modalities overcome immune suppressive tumor microenvironments to enable the efficacy of ICI therapy.

4.
Viruses ; 15(2)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36851710

RESUMO

Numerous proteomic and transcriptomic studies have been carried out to better understand the current multi-variant SARS-CoV-2 virus mechanisms of action and effects. However, they are mostly centered on mRNAs and proteins. The effect of the virus on human post-transcriptional regulatory agents such as microRNAs (miRNAs), which are involved in the regulation of 60% of human gene activity, remains poorly explored. Similar to research we have previously undertaken with other viruses such as Ebola and HIV, in this study we investigated the miRNA profile of lung epithelial cells following infection with SARS-CoV-2. At the 24 and 72 h post-infection time points, SARS-CoV-2 did not drastically alter the miRNome. About 90% of the miRNAs remained non-differentially expressed. The results revealed that miR-1246, miR-1290 and miR-4728-5p were the most upregulated over time. miR-196b-5p and miR-196a-5p were the most downregulated at 24 h, whereas at 72 h, miR-3924, miR-30e-5p and miR-145-3p showed the highest level of downregulation. In the top significantly enriched KEGG pathways of genes targeted by differentially expressed miRNAs we found, among others, MAPK, RAS, P13K-Akt and renin secretion signaling pathways. Using RT-qPCR, we also showed that SARS-CoV-2 may regulate several predicted host mRNA targets involved in the entry of the virus into host cells (ACE2, TMPRSS2, ADAM17, FURIN), renin-angiotensin system (RAS) (Renin, Angiotensinogen, ACE), innate immune response (IL-6, IFN1ß, CXCL10, SOCS4) and fundamental cellular processes (AKT, NOTCH, WNT). Finally, we demonstrated by dual-luciferase assay a direct interaction between miR-1246 and ACE-2 mRNA. This study highlights the modulatory role of miRNAs in the pathogenesis of SARS-CoV-2.


Assuntos
COVID-19 , MicroRNAs , Humanos , MicroRNAs/genética , SARS-CoV-2 , Transcriptoma , Renina , Proteômica , Proteínas Proto-Oncogênicas c-akt , COVID-19/genética
5.
ACS Chem Biol ; 17(5): 1269-1281, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35522208

RESUMO

Covalent antibody recruiting molecules (cARMs) constitute a proximity-inducing chemical strategy to modulate the recognition and elimination of cancer cells by the immune system. Recognition is achieved through synthetic bifunctional molecules that use covalency to stably bridge endogenous hapten-specific antibodies like anti-dinitrophenyl (anti-DNP), with tumor antigens on cancer cell surfaces. To recruit these antibodies, cARMs are equipped with the native hapten-binding molecule. The majority of cancer-killing immune machinery, however, recognizes epitopes on protein ligands and not small molecule haptens (e.g., Fc receptors, pathogen-specific antibodies). To access this broader class of immune machinery for recruitment, we developed a covalent immune proximity-inducing strategy. This strategy uses synthetic bifunctional electrophilic peptides derived from the native protein ligand. These bifunctional peptides are engineered to contain both a tumor-targeting molecule and a sulfonyl (VI) fluoride exchange (SuFEx) electrophile. As a proof of concept, we synthesized bifunctional electrophilic peptides derived from glycoprotein D (gD) on herpes simplex virus (HSV), to recruit gD-specific serum anti-HSV antibodies to cancer cells expressing the prostate-specific membrane antigen (PSMA). We demonstrate that serum anti-HSV antibodies can be selectively and irreversibly targeted by these electrophilic peptides and that the reaction rate can be uniquely enhanced by tuning SuFEx chemistry without a loss in selectivity. In cellular assays, electrophilic peptides demonstrated enhanced anti-tumor immunotherapeutic efficacy compared to analogous peptides lacking electrophilic functionality. This enhanced efficacy was especially prominent in the context of (a) natural anti-HSV antibodies isolated from human serum and (b) harder to treat tumor cells associated with lower PSMA expression levels. Overall, we demonstrate a new covalent peptide-based approach to immune proximity induction and reveal the potential utility of anti-viral antibodies in synthetic tumor immunotherapy.


Assuntos
Herpes Simples , Neoplasias , Anticorpos/química , Haptenos , Humanos , Imunoterapia , Masculino , Peptídeos , Simplexvirus , Proteínas do Envelope Viral/metabolismo
6.
Mol Ther Oncolytics ; 25: 16-30, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35399605

RESUMO

Oncolytic virotherapies have shown excellent promise in a variety of cancers by promoting antitumor immunity. However, the effects of oncolytic virus-mediated type I interferon (IFN-I) production on antitumor immunity remain unclear. Recent reports have highlighted immunosuppressive functions of IFN-I in the context of checkpoint inhibitor and cell-based therapies. In this study, we demonstrate that oncolytic virus-induced IFN-I promotes the expression of PD-L1 in tumor cells and leukocytes in a IFN receptor (IFNAR)-dependent manner. Inhibition of IFN-I signaling using a monoclonal IFNAR antibody decreased IFN-I-induced PD-L1 expression and promoted tumor-specific T cell effector responses when combined with oncolytic virotherapy. Furthermore, IFNAR blockade improved therapeutic response to oncolytic virotherapy in a manner comparable with PD-L1 blockade. Our study highlights a critical immunosuppressive role of IFN-I on antitumor immunity and uses a combination strategy that improves the response to oncolytic virotherapy.

7.
Cell Rep ; 38(10): 110502, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235831

RESUMO

Since the vast majority of species solely rely on innate immunity for host defense, it stands to reason that a critical evolutionary trait like immunological memory evolved in this primitive branch of our immune system. There is ample evidence that vaccines such as bacillus Calmette-Guérin (BCG) induce protective innate immune memory responses (trained immunity) against heterologous pathogens. Here we show that while BCG vaccination significantly reduces morbidity and mortality against influenza A virus (IAV), it fails to provide protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In contrast to IAV, SARS-CoV-2 infection leads to unique pulmonary vasculature damage facilitating viral dissemination to other organs, including the bone marrow (BM), a central site for BCG-mediated trained immunity. Finally, monocytes from BCG-vaccinated individuals mount an efficient cytokine response to IAV infection, while this response is minimal following SARS-CoV-2. Collectively, our data suggest that the protective capacity of BCG vaccination is contingent on viral pathogenesis and tissue tropism.


Assuntos
COVID-19 , Vírus da Influenza A , Vacina BCG , COVID-19/prevenção & controle , Humanos , Imunidade Inata , SARS-CoV-2 , Vacinação
8.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163675

RESUMO

Immune checkpoint therapy has shown great promise in the treatment of cancers with a high mutational burden, such as mismatch repair-deficient colorectal carcinoma (dMMR CRC). However, many patients fail to respond to immune checkpoint therapy. Using a mouse model of dMMR CRC, we demonstrated that tumors can be further sensitized to immune checkpoint therapy by using a combination of low-dose chemotherapy and oncolytic HSV-1. This combination induced the infiltration of CD8+ and CD4+ T cells into the tumor and the upregulation of gene signatures associated with the chemoattraction of myeloid cell subsets. When combined with immune checkpoint therapy, the combination promoted the infiltration of activated type 1 conventional dendritic cells (cDC1s) into the tumor. Furthermore, we found this combination strategy to be dependent on cDC1s, and its therapeutic efficacy to be abrogated in cDC1-deficient Batf3-/- mice. Thus, we demonstrated that the adjuvanticity of dMMR CRCs can be improved by combining low-dose chemotherapy and oncolytic HSV-1 in a cDC1-dependent manner.


Assuntos
Adenocarcinoma/terapia , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/terapia , Células Dendríticas/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Terapia Viral Oncolítica , Adenocarcinoma/patologia , Animais , Antineoplásicos/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Terapia Combinada , Células Dendríticas/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos Endogâmicos C57BL , Mitomicina/farmacologia , Mitomicina/uso terapêutico , Proteínas Repressoras/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Transcriptoma/genética
9.
Cell ; 185(5): 896-915.e19, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35180381

RESUMO

The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Imunidade nas Mucosas , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Citocinas/sangue , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Vetores Genéticos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Neutralização , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Nucleocapsídeo/metabolismo , Pan troglodytes , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
10.
Cell Biosci ; 11(1): 202, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34879865

RESUMO

BACKGROUND: The ongoing COVID-19 pandemic has resulted in 185 million recorded cases and over 4 million deaths worldwide. Several COVID-19 vaccines have been approved for emergency use in humans and are being used in many countries. However, all the approved vaccines are administered by intramuscular injection and this may not prevent upper airway infection or viral transmission. RESULTS: Here, we describe a novel, intranasally delivered COVID-19 vaccine based on a helper-dependent adenoviral (HD-Ad) vector. The vaccine (HD-Ad_RBD) produces a soluble secreted form of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein and we show it induced robust mucosal and systemic immunity. Moreover, intranasal immunization of K18-hACE2 mice with HD-Ad_RBD using a prime-boost regimen, resulted in complete protection of the upper respiratory tract against SARS-CoV-2 infection. CONCLUSION: Our approaches provide a powerful platform for constructing highly effective vaccines targeting SARS-CoV-2 and its emerging variants.

11.
Cancers (Basel) ; 13(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34771752

RESUMO

The era of immunotherapy has seen an insurgence of novel therapies driving oncologic research and the clinical management of the disease. We have previously reported that a combination of chemotherapy (FEC) and oncolytic virotherapy (oHSV-1) can be used to sensitize otherwise non-responsive tumors to immune checkpoint blockade and that tumor-infiltrating B cells are required for the efficacy of our therapeutic regimen in a murine model of triple-negative breast cancer. In the studies herein, we have performed gene expression profiling using microarray analyses and have investigated the differential gene expression between tumors treated with FEC + oHSV-1 versus untreated tumors. In this work, we uncovered a therapeutically driven switch of the myeloid phenotype and a gene signature driving increased tumor cell killing.

12.
Nat Commun ; 12(1): 5148, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446714

RESUMO

Coronavirus infection in humans is usually associated to respiratory tract illnesses, ranging in severity from mild to life-threatening respiratory failure. The aryl hydrocarbon receptor (AHR) was recently identified as a host factor for Zika and dengue viruses; AHR antagonists boost antiviral immunity, decrease viral titers and ameliorate Zika-induced pathology in vivo. Here we report that AHR is activated by infection with different coronaviruses, potentially impacting antiviral immunity and lung epithelial cells. Indeed, the analysis of single-cell RNA-seq from lung tissue detected increased expression of AHR and AHR transcriptional targets, suggesting AHR signaling activation in SARS-CoV-2-infected epithelial cells from COVID-19 patients. Moreover, we detected an association between AHR expression and viral load in SARS-CoV-2 infected patients. Finally, we found that the pharmacological inhibition of AHR suppressed the replication in vitro of one of the causative agents of the common cold, HCoV-229E, and the causative agent of the COVID-19 pandemic, SARS-CoV-2. Taken together, these findings suggest that AHR activation is a common strategy used by coronaviruses to evade antiviral immunity and promote viral replication, which may also contribute to lung pathology. Future studies should further evaluate the potential of AHR as a target for host-directed antiviral therapy.


Assuntos
Infecções por Coronavirus/metabolismo , Coronavirus/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Humanos , Masculino , Receptores de Hidrocarboneto Arílico/genética , SARS-CoV-2/fisiologia
13.
Commun Biol ; 4(1): 859, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253827

RESUMO

Triple negative breast cancer holds a dismal clinical outcome and as such, patients routinely undergo aggressive, highly toxic treatment regimens. Clinical trials for TNBC employing immune checkpoint blockade in combination with chemotherapy show modest prognostic benefit, but the percentage of patients that respond to treatment is low, and patients often succumb to relapsed disease. Here, we show that a combination immunotherapy platform utilizing low dose chemotherapy (FEC) combined with oncolytic virotherapy (oHSV-1) increases tumor-infiltrating lymphocytes, in otherwise immune-bare tumors, allowing 60% of mice to achieve durable tumor regression when treated with immune checkpoint blockade. Whole-tumor RNA sequencing of mice treated with FEC + oHSV-1 shows an upregulation of B cell receptor signaling pathways and depletion of B cells prior to the start of treatment in mice results in complete loss of therapeutic efficacy and expansion of myeloid-derived suppressor cells. Additionally, RNA sequencing data shows that FEC + oHSV-1 suppresses genes associated with myeloid-derived suppressor cells, a key population of cells that drive immune escape and mediate therapeutic resistance. These findings highlight the importance of tumor-infiltrating B cells as drivers of antitumor immunity and their potential role in the regulation of myeloid-derived suppressor cells.


Assuntos
Linfócitos B/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Células Supressoras Mieloides/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/terapia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Terapia Combinada , Feminino , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Estimativa de Kaplan-Meier , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Terapia Viral Oncolítica/métodos , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Células Vero
14.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063642

RESUMO

Triple negative breast cancer (TNBC) is an aggressive subtype of the disease with poor clinical outcomes and limited therapeutic options. Immune checkpoint blockade (CP) has surged to the forefront of cancer therapies with widespread clinical success in a variety of cancer types. However, the percentage of TNBC patients that benefit from CP as a monotherapy is low, and clinical trials have shown the need for combined therapeutic modalities. Specifically, there has been interest in combining CP therapy with radiation therapy where clinical studies primarily with external beam have suggested their therapeutic synergy, contributing to the development of anti-tumor immunity. Here, we have developed a therapeutic platform combining radionuclide therapy (RT) and immunotherapy utilizing a radiolabeled biomolecule and CP in an E0771 murine TNBC tumor model. Survival studies show that while neither monotherapy is able to improve therapeutic outcomes, the combination of RT + CP extended overall survival. Histologic analysis showed that RT + CP increased necrotic tissue within the tumor and decreased levels of F4/80+ macrophages. Flow cytometry analysis of the peripheral blood also showed that RT + CP suppressed macrophages and myeloid-derived suppressive cells, both of which actively contribute to immune escape and tumor relapse.


Assuntos
Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/radioterapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/radioterapia , Animais , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Fatores Imunológicos/genética , Imunoterapia/métodos , Camundongos , Recidiva Local de Neoplasia/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int J Mol Sci ; 22(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063096

RESUMO

Programmed cell death protein 1 (PD-1), a receptor on T cells, and its ligand, PD-L1, have been a topic of much interest in cancer research. Both tumour and virus-infected cells can upregulate PD-L1 to suppress cytotoxic T-cell killing. Research on the PD-1/PD-L1 axis has led to the development of anti-PD-1/PD-L1 immune checkpoint blockades (ICBs) as promising cancer therapies. Although effective in some cancer patients, for many, this form of treatment is ineffective due to a lack of immunogenicity in the tumour microenvironment (TME). Despite the development of therapies targeting the PD-1/PD-L1 axis, the mechanisms and pathways through which these proteins are regulated are not completely understood. In this review, we discuss the latest research on molecules of inflammation and innate immunity that regulate PD-L1 expression, how its expression is regulated during viral infection, and how it is modulated by different cancer therapies. We also highlight existing research on the development of different combination therapies with anti-PD-1/PD-L1 antibodies. This information can be used to develop better cancer immunotherapies that take into consideration the pathways involved in the PD-1/PD-L1 axis, so these molecules do not reduce their efficacy, which is currently seen with some cancer therapies. This review will also assist in understanding how the TME changes during treatment, which will provide further rationale for combination therapies.


Assuntos
Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Viroses/metabolismo , Animais , Autoimunidade , Antígeno B7-H1/metabolismo , Humanos , Modelos Biológicos , Neoplasias/patologia , Neoplasias/terapia
16.
Cancers (Basel) ; 13(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671881

RESUMO

Throughout the history of oncology research, tumor heterogeneity has been a major hurdle for the successful treatment of cancer. As a result of aberrant changes in the tumor microenvironment such as high mutational burden, hypoxic conditions and abnormal vasculature, several malignant subpopulations often exist within a single tumor mass. Therapeutic intervention can also increase selective pressure towards subpopulations with acquired resistance. This phenomenon is often the cause of relapse in previously responsive patients, drastically changing the expected outcome of therapy. In the case of cancer immunotherapy, tumor heterogeneity is a substantial barrier as acquired resistance often takes the form of antigen escape and immunosuppression. In an effort to combat intrinsic resistance mechanisms, therapies are often combined as a multi-pronged approach to target multiple pathways simultaneously. These multi-therapy regimens have long been a mainstay of clinical oncology with chemotherapy cocktails but are more recently being investigated in the emerging landscape of immunotherapy. Furthermore, as high throughput technology becomes more affordable and accessible, researchers continue to deepen their understanding of the factors that influence tumor heterogeneity and shape the TME over the course of treatment regimens. In this review, we will investigate the factors that give rise to tumor heterogeneity and the impact it has on the field of immunotherapy. We will discuss how tumor heterogeneity causes resistance to various treatments and review the strategies currently being employed to overcome this challenging clinical hurdle. Finally, we will outline areas of research that should be prioritized to gain a better understanding of tumor heterogeneity and develop appropriate solutions.

17.
Viruses ; 14(1)2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-35062264

RESUMO

Medicinal chemistry optimization of a previously described stilbene inhibitor of HIV-1, 5350150 (2-(2-(5-nitro-2-thienyl)vinyl)quinoline), led to the identification of the thiazole-5-carboxamide derivative (GPS491), which retained potent anti-HIV-1 activity with reduced toxicity. In this report, we demonstrate that the block of HIV-1 replication by GPS491 is accompanied by a drastic inhibition of viral gene expression (IC50 ~ 0.25 µM), and alterations in the production of unspliced, singly spliced, and multiply spliced HIV-1 RNAs. GPS491 also inhibited the replication of adenovirus and multiple coronaviruses. Low µM doses of GPS491 reduced adenovirus infectious yield ~1000 fold, altered virus early gene expression/viral E1A RNA processing, blocked viral DNA amplification, and inhibited late (hexon) gene expression. Loss of replication of multiple coronaviruses (229E, OC43, SARS-CoV2) upon GPS491 addition was associated with the inhibition of viral structural protein expression and the formation of virus particles. Consistent with the observed changes in viral RNA processing, GPS491 treatment induced selective alterations in the accumulation/phosphorylation/function of splicing regulatory SR proteins. Our study establishes that a compound that impacts the activity of cellular factors involved in RNA processing can prevent the replication of several viruses with minimal effect on cell viability.


Assuntos
Adenoviridae/efeitos dos fármacos , Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Tiazóis/farmacologia , Replicação Viral/efeitos dos fármacos , Adenoviridae/fisiologia , Antivirais/química , Linhagem Celular , Coronavirus/classificação , Coronavirus/fisiologia , Expressão Gênica/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Fatores de Processamento de RNA/metabolismo , RNA Viral/metabolismo , Tiazóis/química
18.
Commun Biol ; 3(1): 645, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149194

RESUMO

Cancer immunotherapies using monoclonal antibodies to block inhibitory checkpoints are showing durable remissions in many types of cancer patients, although the majority of breast cancer patients acquire little benefit. Human melanoma and lung cancer patient studies suggest that immune checkpoint inhibitors are often potent in patients that already have intratumoral T cell infiltrate; although it remains unknown what types of interventions can result in an intratumoral T cell infiltrate in breast cancer. Using non-T cell-inflamed mammary tumors, we assessed what biological processes and downstream inflammation can overcome the barriers to spontaneous T cell priming. Here we show a specific type of combination therapy, consisting of oncolytic virus and chemotherapy, activates necroptosis and limits tumor growth in autochthonous tumors. Combination therapy activates proinflammatory cytokines; intratumoral influx of myeloid cells and cytotoxic T cell infiltrate in locally treated and distant autochthonous tumors to render them susceptible to immune checkpoint inhibitors.


Assuntos
Inibidores de Checkpoint Imunológico/farmacologia , Inflamação/metabolismo , Terapia Viral Oncolítica , Vírus Oncolíticos , Microambiente Tumoral , Animais , Antineoplásicos , Linhagem Celular Tumoral , Feminino , Deleção de Genes , Humanos , Neoplasias Mamárias Animais , Camundongos , Camundongos Transgênicos , Necroptose , Osteossarcoma/metabolismo
19.
Cells ; 9(4)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316260

RESUMO

The tumor microenvironment is a complex ecosystem comprised of many different cell types, abnormal vasculature and immunosuppressive cytokines. The irregular growth kinetics with which tumors grow leads to increased oxygen consumption and, in turn, hypoxic conditions. Hypoxia has been associated with poor clinical outcome, increased tumor heterogeneity, emergence of resistant clones and evasion of immune detection. Additionally, hypoxia-driven cell death pathways have traditionally been thought of as tolerogenic processes. However, as researchers working in the field of immunotherapy continue to investigate and unveil new types of immunogenic cell death (ICD), it has become clear that, in some instances, hypoxia may actually induce ICD within a tumor. In this review, we will discuss hypoxia-driven immune escape that drives poor prognostic outcomes, the ability of hypoxia to induce ICD and potential therapeutic targets amongst hypoxia pathways.


Assuntos
Morte Celular/imunologia , Hipóxia Celular , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Linfócitos B/imunologia , Células Dendríticas/imunologia , Humanos , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Neoplasias/patologia , Transdução de Sinais/genética , Linfócitos T/imunologia , Fatores de Transcrição/metabolismo
20.
J Immunother Cancer ; 8(1)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32209603

RESUMO

Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.


Assuntos
Morte Celular Imunogênica/genética , Biologia Molecular/métodos , Consenso , Guias como Assunto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA