Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2318: 267-279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019296

RESUMO

Cellular reprogramming is a process by which adult differentiated cells lose their identity and are converted into pluripotent stem cells, known as induced pluripotent stem (iPS) cells. This process can be achieved in vitro and in vivo and is relevant for many fields including regenerative medicine and cancer. Cellular reprogramming is commonly induced by the ectopic expression of a transcription factor cocktail composed by Oct4, Sox2, Klf4, and Myc (abbreviated as OSKM), and its efficiency and kinetics are strongly dependent on the presence of Myc. Here, we describe a versatile method to study reprogramming in vivo based on the use of adeno-associated viral (AAV) vectors, which allows the targeting of specific organs and cell types. This method can be used to test Myc mutations or genes that may replace Myc, or be combined with different Myc regulators. In vivo reprogramming can be scored by the presence of teratomas and the isolation of in vivo iPS, thereby providing a simple surrogate for the function of Myc in dedifferentiation and stemness. Our protocol can be divided into five steps: (1) intravenous inoculation of AAV vectors; (2) monitoring the animals until the appearance of teratomas; (3) analysis of teratomas; (4) histopathological analysis of mouse organs; and (5) isolation of in vivo-generated iPS cells from teratomas, blood, and bone marrow. The information obtained by this in vivo testing platform may provide relevant information on the role of Myc in tissue regeneration, stemness, and cancer.


Assuntos
Técnicas de Reprogramação Celular/métodos , Reprogramação Celular/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Reprogramação Celular/fisiologia , DNA/genética , Dependovirus/genética , Fibroblastos/citologia , Genes myc/genética , Genes myc/fisiologia , Engenharia Genética/métodos , Vetores Genéticos/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo , Transdução Genética
2.
J Am Heart Assoc ; 8(18): e012875, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31510873

RESUMO

Background Mutations in the POT1 gene explain abnormally long telomeres and multiple tumors including cardiac angiosarcomas (CAS). However, the link between long telomeres and tumorigenesis is poorly understood. Methods and Results Here, we have studied the somatic landscape of 3 different angiosarcoma patients with mutations in the POT1 gene to further investigate this tumorigenesis process. In addition, the genetic landscape of 7 CAS patients without mutations in the POT1 gene has been studied. Patients with CAS and nonfunctional POT1 did not repress ATR (ataxia telangiectasia RAD3-related)-dependent DNA damage signaling and showed a constitutive increase of cell cycle arrest and somatic activating mutations in the VEGF (vascular endothelial growth factor)/angiogenesis pathway (KDR gene). The same observation was made in POT1 mutation carriers with tumors different from CAS and also in CAS patients without mutations in the POT1 gene but with mutations in other genes involved in DNA damage signaling. Conclusions Inhibition of POT1 function and damage-response malfunction activated DNA damage signaling and increased cell cycle arrest as well as interfered with apoptosis, which would permit acquisition of somatic mutations in the VEGF/angiogenesis pathway that drives tumor formation. Therapies based on the inhibition of damage signaling in asymptomatic carriers may diminish defects on cell cycle arrest and thus prevent the apoptosis deregulation that leads to the acquisition of driver mutations.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Dano ao DNA/genética , Neoplasias Cardíacas/genética , Hemangiossarcoma/genética , Proteínas de Ligação a Telômeros/genética , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinogênese , Estudos de Casos e Controles , Proteínas de Ligação a DNA/genética , Neoplasias Cardíacas/metabolismo , Hemangiossarcoma/metabolismo , Humanos , Imuno-Histoquímica , Mutação , Neovascularização Patológica/genética , Complexo Shelterina , Transdução de Sinais , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Sequenciamento do Exoma
3.
Nat Commun ; 9(1): 2651, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985406

RESUMO

In vivo reprogramming of somatic cells into induced pluripotent stem cells (iPSC) holds vast potential for basic research and regenerative medicine. However, it remains hampered by a need for vectors to express reprogramming factors (Oct-3/4, Klf4, Sox2, c-Myc; OKSM) in selected organs. Here, we report OKSM delivery vectors based on pseudotyped Adeno-associated virus (AAV). Using the AAV-DJ capsid, we could robustly reprogram mouse embryonic fibroblasts with low vector doses. Swapping to AAV8 permitted to efficiently reprogram somatic cells in adult mice by intravenous vector delivery, evidenced by hepatic or extra-hepatic teratomas and iPSC in the blood. Notably, we accomplished full in vivo reprogramming without c-Myc. Most iPSC generated in vitro or in vivo showed transcriptionally silent, intronic or intergenic vector integration, likely reflecting the increased host genome accessibility during reprogramming. Our approach crucially advances in vivo reprogramming technology, and concurrently facilitates investigations into the mechanisms and consequences of AAV persistence.


Assuntos
Reprogramação Celular/genética , Dependovirus/genética , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Expressão Gênica , Vetores Genéticos/genética , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Camundongos Endogâmicos C57BL , Camundongos Nus , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução Genética
4.
Aging Cell ; 17(2)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29280266

RESUMO

Cellular senescence is a damage response aimed to orchestrate tissue repair. We have recently reported that cellular senescence, through the paracrine release of interleukin-6 (IL6) and other soluble factors, strongly favors cellular reprogramming by Oct4, Sox2, Klf4, and c-Myc (OSKM) in nonsenescent cells. Indeed, activation of OSKM in mouse tissues triggers senescence in some cells and reprogramming in other cells, both processes occurring concomitantly and in close proximity. In this system, Ink4a/Arf-null tissues cannot undergo senescence, fail to produce IL6, and cannot reprogram efficiently; whereas p53-null tissues undergo extensive damage and senescence, produce high levels of IL6, and reprogram efficiently. Here, we have further explored the genetic determinants of in vivo reprogramming. We report that Ink4a, but not Arf, is necessary for OSKM-induced senescence and, thereby, for the paracrine stimulation of reprogramming. However, in the absence of p53, IL6 production and reprogramming become independent of Ink4a, as revealed by the analysis of Ink4a/Arf/p53 deficient mice. In the case of the cell cycle inhibitor p21, its protein levels are highly elevated upon OSKM activation in a p53-independent manner, and we show that p21-null tissues present increased levels of senescence, IL6, and reprogramming. We also report that Il6-mutant tissues are impaired in undergoing reprogramming, thus reinforcing the critical role of IL6 in reprogramming. Finally, young female mice present lower efficiency of in vivo reprogramming compared to male mice, and this gender difference disappears with aging, both observations being consistent with the known anti-inflammatory effect of estrogens. The current findings regarding the interplay between senescence and reprogramming may conceivably apply to other contexts of tissue damage.


Assuntos
Reprogramação Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Interleucina-6/metabolismo , Animais , Senescência Celular , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Camundongos
5.
Stem Cell Reports ; 8(2): 460-475, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28162998

RESUMO

Reprogramming of differentiated cells into induced pluripotent stem cells has been recently achieved in vivo in mice. Telomeres are essential for chromosomal stability and determine organismal life span as well as cancer growth. Here, we study whether tissue dedifferentiation induced by in vivo reprogramming involves changes at telomeres. We find telomerase-dependent telomere elongation in the reprogrammed areas. Notably, we found highly upregulated expression of the TRF1 telomere protein in the reprogrammed areas, which was independent of telomere length. Moreover, TRF1 inhibition reduced in vivo reprogramming efficiency. Importantly, we extend the finding of TRF1 upregulation to pathological tissue dedifferentiation associated with neoplasias, in particular during pancreatic acinar-to-ductal metaplasia, a process that involves transdifferentiation of adult acinar cells into ductal-like cells due to K-Ras oncogene expression. These findings place telomeres as important players in cellular plasticity both during in vivo reprogramming and in pathological conditions associated with increased plasticity, such as cancer.


Assuntos
Transformação Celular Neoplásica/genética , Reprogramação Celular/genética , Telômero/genética , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Desdiferenciação Celular/genética , Transformação Celular Neoplásica/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Regulação da Expressão Gênica , Heterocromatina/genética , Heterocromatina/metabolismo , Camundongos , Camundongos Transgênicos , Subunidades Proteicas/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Telomerase/metabolismo , Telômero/metabolismo , Homeostase do Telômero , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Coesinas
6.
Science ; 354(6315)2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27884981

RESUMO

Reprogramming of differentiated cells into pluripotent cells can occur in vivo, but the mechanisms involved remain to be elucidated. Senescence is a cellular response to damage, characterized by abundant production of cytokines and other secreted factors that, together with the recruitment of inflammatory cells, result in tissue remodeling. Here, we show that in vivo expression of the reprogramming factors OCT4, SOX2, KLF4, and cMYC (OSKM) in mice leads to senescence and reprogramming, both coexisting in close proximity. Genetic and pharmacological analyses indicate that OSKM-induced senescence requires the Ink4a/Arf locus and, through the production of the cytokine interleukin-6, creates a permissive tissue environment for in vivo reprogramming. Biological conditions linked to senescence, such as tissue injury or aging, favor in vivo reprogramming by OSKM. These observations may be relevant for tissue repair.


Assuntos
Reprogramação Celular/genética , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Transcrição/metabolismo , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Regulação da Expressão Gênica , Loci Gênicos , Células-Tronco Pluripotentes Induzidas/metabolismo , Interleucina-6/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Sulfonamidas/farmacologia , Teratoma/genética , Teratoma/patologia , Fatores de Transcrição/genética
7.
Nature ; 502(7471): 340-5, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24025773

RESUMO

Reprogramming of adult cells to generate induced pluripotent stem cells (iPS cells) has opened new therapeutic opportunities; however, little is known about the possibility of in vivo reprogramming within tissues. Here we show that transitory induction of the four factors Oct4, Sox2, Klf4 and c-Myc in mice results in teratomas emerging from multiple organs, implying that full reprogramming can occur in vivo. Analyses of the stomach, intestine, pancreas and kidney reveal groups of dedifferentiated cells that express the pluripotency marker NANOG, indicative of in situ reprogramming. By bone marrow transplantation, we demonstrate that haematopoietic cells can also be reprogrammed in vivo. Notably, reprogrammable mice present circulating iPS cells in the blood and, at the transcriptome level, these in vivo generated iPS cells are closer to embryonic stem cells (ES cells) than standard in vitro generated iPS cells. Moreover, in vivo iPS cells efficiently contribute to the trophectoderm lineage, suggesting that they achieve a more plastic or primitive state than ES cells. Finally, intraperitoneal injection of in vivo iPS cells generates embryo-like structures that express embryonic and extraembryonic markers. We conclude that reprogramming in vivo is feasible and confers totipotency features absent in standard iPS or ES cells. These discoveries could be relevant for future applications of reprogramming in regenerative medicine.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Teratoma/metabolismo , Células-Tronco Totipotentes/citologia , Animais , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Desdiferenciação Celular , Separação Celular , Células Cultivadas , Reprogramação Celular/genética , Ectoderma/citologia , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Fibroblastos/citologia , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Intestinos/citologia , Rim/citologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Especificidade de Órgãos , Pâncreas/citologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Estômago/citologia , Teratoma/genética , Teratoma/patologia , Células-Tronco Totipotentes/metabolismo , Transcriptoma/genética , Trofoblastos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA