Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 204(Pt C): 112295, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34743807

RESUMO

Frying is one of the cooking methods which generates mono aromatic hydrocarbons, including benzene, toluene, ethylbenzene, and xylene (BTEX); subsequently, it affects health through carcinogenic (CR) and non-carcinogenic risks (n-CR). However, their environmental effects known by secondary organic aerosols (SOA) and ozone formation potential (OFP) were also attended by many scientists. Therefore, this study quantified the BTEX emissions from 4 types of most commonly used edible oils (canola, corn, sunflower, and blend) under various frying conditions of temperatures and food additives. Furthermore, the effects of the chemicals in the light of health (CR and n-CR) and environment (SOA and OFP) were also investigated. The study results showed that higher temperatures could significantly increase the emissions, while the addition of food ingredients significantly reduces the emissions. The rank order of emitted chemical was obtained as T > B > E > X. The blend had the most emission among oils, followed by, in descending order, corn, sunflower, and canola. In association with environmental effects, the orders of X > T > E > B and T âˆ¼ E > X > B were obtained for OFP and SOA, respectively. THQ for blend, corn, canola, and sunflower oils was higher than 1 (1.76, 1.35, 1.27, and 1.002, respectively), showing a considerable n-CR when the hood was off. In this respect, TCR for the oils (1.78 × 10-4, 1.45 × 10-4, 1.39 × 10-4, and 1.05 × 10-4, respectively) shown the probable risk for all oils. Moreover, hood switching reduced the risk by about 11-81%.


Assuntos
Poluentes Atmosféricos , Xilenos , Poluentes Atmosféricos/análise , Benzeno/análise , Benzeno/toxicidade , Derivados de Benzeno , Monitoramento Ambiental , Medição de Risco , Tolueno/análise , Xilenos/análise , Xilenos/toxicidade
2.
Environ Geochem Health ; 41(3): 1473-1487, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30552597

RESUMO

The exposure to heavy metals and polycyclic aromatic hydrocarbons (PAHs) bound to particulate matter 2.5 (PM2.5) ambient air can result in some adverse health effect. In the current study, PM2.5 ambient air of Tehran metropolitan, Iran, was characterized by the aid of scanning electron microscope and energy-dispersive X-ray techniques. Also, the human health risk of heavy metals and PAHs bound PM2.5 for adults and children was assessed using the Monte Carlo simulation method. According to our findings, a size range of 0.97-2.46 µm with an average diameter of 1.56 µm for PM2.5 was noted. The average concentration of PM2.5 in ambient air (8.29E+04 ± 2.94E+04 ng m-3) significantly (p < 0.05) was suppressed the national (2.50E+04 ng m-3), World Health Organization (2.50E+04 ng m-3) and Environmental Protection Agency (3.50E+04 ng m-3) standard limits. The rank order of heavy metals bound PM2.5 was determined as Al > Cu > Cd > Cr > Pb > Ni > Fe > Mn. The maximum concentration among 16 PAHs compounds investigated was correlated with Phenanthrene. Considering the principal component analysis, the main source of heavy metals (Ni, Pb and Cr) is vehicle combustion. Moreover, the rank order of exposure pathways based on their health risk was ingestion > inhalation > dermal contact. Moreover, the significant health risks for Tehran residents due to heavy metals bound PM2.5 [target hazard quotient > 1; carcinogenic risk > 1.00E-06)] were noted based on the health risk assessment. Excessive carcinogenic risk (ECR) of PAHs bound PM2.5 was 4.16E-07 that demonstrated that there is no considerable risk (ECR < 1.00E-06).


Assuntos
Poluentes Atmosféricos/análise , Metais Pesados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Adulto , Poluentes Atmosféricos/toxicidade , Carcinógenos/análise , Carcinógenos/toxicidade , Criança , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Humanos , Irã (Geográfico) , Modelos Estatísticos , Método de Monte Carlo , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Medição de Risco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA