Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Lung Cancer Res ; 8(6): 1000-1015, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32010578

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer-related death worldwide, with 5-year overall survival less than 15%. Therefore, it is essential to find biomarkers for early detection and prognosis. Aberrant DNA methylation is a common feature of human cancers and its utility is already recognized in cancer management. The aim of this study was to explore the diagnostic and prognostic value of the promoter methylation status of the ASC/TMS1/PYCARD and MyD88 genes, key adaptor molecules in the activation of the innate immune response and apoptosis pathways. METHODS: A total of 50 non-small cell lung cancer (NSCLC) patients were enrolled in the study. Methylation of bisulphite converted DNA was quantified by pyrosequencing in fresh frozen malignant tissues and adjacent non-malignant tissues. Associations between methylation and lung function, tumor grade and overall survival were evaluated using receiver-operating characteristics (ROC) analysis and statistical tests of hypothesis. RESULTS: Methylation level of tested genes is generally low but significantly decreased in tumor tissues (ASC/TMS1/PYCARD, P<0.0001; MyD88, P<0.0002), which correlates with increased protein expression. Three CpG sites were identified as promising diagnostic marker candidates; CpG11 (-63 position) in ASC/TMS1/PYCARD and CpG1 (-253 position) and 2 (-265 position) in MyD88. The association study showed that the methylation status of the ASC/TMS1 CpG4 site (-34 position) in malignant and non-malignant tissues is associated with the overall survival (P=0.019) and the methylation status of CpG8 site (-92 position) is associated with TNM-stage (P=0.011). CONCLUSIONS: The methylation status of the ASC/TMS1/PYCARD and MyD88 promoters are promising prognostic biomarker candidates. However, presented results should be considered as a preliminary and should be confirmed on the larger number of the samples.

2.
PLoS One ; 11(3): e0151261, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26974671

RESUMO

S-adenosylhomocysteine hydrolase (AHCY) deficiency is a rare autosomal recessive disorder in methionine metabolism caused by mutations in the AHCY gene. Main characteristics are psychomotor delay including delayed myelination and myopathy (hypotonia, absent tendon reflexes etc.) from birth, mostly associated with hypermethioninaemia, elevated serum creatine kinase levels and increased genome wide DNA methylation. The prime function of AHCY is to hydrolyse and efficiently remove S-adenosylhomocysteine, the by-product of transmethylation reactions and one of the most potent methyltransferase inhibitors. In this study, we set out to more specifically characterize DNA methylation changes in blood samples from patients with AHCY deficiency. Global DNA methylation was increased in two of three analysed patients. In addition, we analysed the DNA methylation levels at differentially methylated regions (DMRs) of six imprinted genes (MEST, SNRPN, LIT1, H19, GTL2 and PEG3) as well as Alu and LINE1 repetitive elements in seven patients. Three patients showed a hypermethylation in up to five imprinted gene DMRs. Abnormal methylation in Alu and LINE1 repetitive elements was not observed. We conclude that DNA hypermethylation seems to be a frequent but not a constant feature associated with AHCY deficiency that affects different genomic regions to different degrees. Thus AHCY deficiency may represent an ideal model disease for studying the molecular origins and biological consequences of DNA hypermethylation due to impaired cellular methylation status.


Assuntos
Elementos Alu , Erros Inatos do Metabolismo dos Aminoácidos/genética , Metilação de DNA , Impressão Genômica , Glicina N-Metiltransferase/deficiência , Elementos Nucleotídeos Longos e Dispersos , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Creatina/sangue , Feminino , Glicina N-Metiltransferase/sangue , Glicina N-Metiltransferase/genética , Humanos , Lactente , Recém-Nascido , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA