Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogenesis ; 11(1): 38, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821197

RESUMO

MiR-21 was identified as a gene whose expression correlated with the extent of metastasis of murine mammary tumours. Since miR-21 is recognised as being associated with poor prognosis in cancer, we investigated its contribution to mammary tumour growth and metastasis in tumours with capacity for spontaneous metastasis. Unexpectedly, we found that suppression of miR-21 activity in highly metastatic tumours resulted in regression of primary tumour growth in immunocompetent mice but did not impede growth in immunocompromised mice. Analysis of the immune infiltrate of the primary tumours at the time when the tumours started to regress revealed an influx of both CD4+ and CD8+ activated T cells and a reduction in PD-L1+ infiltrating monocytes, providing an explanation for the observed tumour regression. Loss of anti-tumour immune suppression caused by decreased miR-21 activity was confirmed by transcriptomic analysis of primary tumours. This analysis also revealed reduced expression of genes associated with cell cycle progression upon loss of miR-21 activity. A second activity of miR-21 was the promotion of metastasis as shown by the loss of metastatic capacity of miR-21 knockdown tumours established in immunocompromised mice, despite no impact on primary tumour growth. A proteomic analysis of tumour cells with altered miR-21 activity revealed deregulation of proteins known to be associated with tumour progression. The development of therapies targeting miR-21, possibly via targeted delivery to tumour cells, could be an effective therapy to combat primary tumour growth and suppress the development of metastatic disease.

2.
Semin Immunol ; 54: 101512, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34763974

RESUMO

Numerous preclinical studies have reported a pro-tumour role for granulocyte colony-stimulating factor (G-CSF) that is predominantly mediated by neutrophils and MDSCs, the major G-CSF receptor expressing populations. In the presence of G-CSF (either tumour-derived or exogenous) these myeloid populations commonly exhibit a T cell suppressive phenotype. However, the direct effects of this cytokine on other immune lineages, such as T and NK cells, are not as well established. Herein we discuss the most recent data relating to the effect of G-CSF on the major immune populations, exclusively in the context of cancer. Recent publications have drawn attention to the other tumour-promoting effects of G-CSF on myeloid cells, including NETosis, promotion of cancer stemness and skewed differentiation of bone marrow progenitors towards myelopoiesis. Although G-CSF is safely and commonly used as a supportive therapy to prevent or treat chemotherapy-associated neutropenia in cancer patients, we also discuss the potential impacts of G-CSF on other anti-cancer treatments. Importantly, considerations for immune checkpoint blockade are highlighted, as many publications report a T cell suppressive effect of G-CSF that may diminish the effectiveness of this immunotherapy.


Assuntos
Células Supressoras Mieloides , Neoplasias , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neutrófilos
3.
Nat Commun ; 12(1): 6920, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836954

RESUMO

Bone marrow is a preferred metastatic site for multiple solid tumours and is associated with poor prognosis and significant morbidity. Accumulating evidence indicates that cancer cells colonise specialised niches within the bone marrow to support their long-term propagation, but the precise location and mechanisms that mediate niche interactions are unknown. Using breast cancer as a model of solid tumour metastasis to the bone marrow, we applied large-scale quantitative three-dimensional imaging to characterise temporal changes in the bone marrow microenvironment during disease progression. We show that mouse mammary tumour cells preferentially home to a pre-existing metaphyseal domain enriched for type H vessels. Metastatic lesion outgrowth rapidly remodelled the local vasculature through extensive sprouting to establish a tumour-supportive microenvironment. The evolution of this tumour microenvironment reflects direct remodelling of the vascular endothelium through tumour-derived granulocyte-colony stimulating factor (G-CSF) in a hematopoietic cell-independent manner. Therapeutic targeting of the metastatic niche by blocking G-CSF receptor inhibited pathological blood vessel remodelling and reduced bone metastasis burden. These findings elucidate a mechanism of 'host' microenvironment hijacking by mammary tumour cells to subvert the local microvasculature to form a specialised, pro-tumorigenic niche.


Assuntos
Medula Óssea , Neoplasias Ósseas , Neoplasias da Mama , Neoplasias Mamárias Animais , Metástase Neoplásica , Microambiente Tumoral , Animais , Medula Óssea/diagnóstico por imagem , Medula Óssea/cirurgia , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/cirurgia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/cirurgia , Neoplasias da Mama/cirurgia , Progressão da Doença , Fator Estimulador de Colônias de Granulócitos , Humanos , Imageamento Tridimensional , Camundongos , Metástase Neoplásica/diagnóstico por imagem , Metástase Neoplásica/terapia , Segunda Neoplasia Primária , Receptores de Fator Estimulador de Colônias
4.
Clin Exp Metastasis ; 35(4): 255-267, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29968171

RESUMO

Granulocyte-colony stimulating factor (G-CSF) is one of several cytokines that can expand and mobilize haematopoietic precursor cells from bone marrow. In particular, G-CSF mobilizes neutrophils when the host is challenged by infection or tissue damage. Severe neutropenia, or febrile neutropenia is a life-threatening event that can be mitigated by administration of G-CSF. Consequently, G-CSF has been used to support patients undergoing chemotherapy who would otherwise require dose reduction due to neutropenia. Over the past 10-15 years it has become increasingly apparent, in preclinical tumour growth and metastasis models, that G-CSF can support tumour progression by mobilization of tumour-associated neutrophils which consequently promote tumour dissemination and metastasis. With the increasing use of G-CSF in the clinic, it is pertinent to ask if there is any evidence of a similar promotion of tumour progression in patients. Here, we have reviewed the preclinical and clinical data on the potential contribution of G-CSF to tumour progression. We conclude that, whilst the evidence for a promotion of metastasis is strong in preclinical models and that limited data indicate that high serum G-CSF levels in patients are associated with poorer prognosis, no studies published so far have revealed evidence of increased tumour progression associated with supportive G-CSF use during chemotherapy in patients. Analysis of G-CSF receptor positive cohorts within supportive trials, as well as studies of the role of G-CSF blockade in appropriate tumours in the absence of chemotherapy could yield clinically translatable findings.


Assuntos
Fator Estimulador de Colônias de Granulócitos/efeitos adversos , Neoplasias/patologia , Animais , Progressão da Doença , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/sangue , Humanos , Metástase Neoplásica , Neoplasias/sangue , Neoplasias/irrigação sanguínea , Neovascularização Patológica/patologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Receptores de Fator Estimulador de Colônias de Granulócitos/sangue
5.
FEBS J ; 285(4): 665-679, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28834401

RESUMO

Evidence is mounting for a role for neutrophils in breast cancer progression to metastasis. However, the role of G-CSF in neutrophil biology in a cancer setting remains to be defined. Herein we discuss the most recent clinical and experimental evidence for neutrophils and G-CSF in the promotion of metastasis, demonstrating a potential mechanistic link between them. Understanding this link is imperative both for the development of diagnostic tests and for therapies targeting neutrophils to improve the treatment of breast cancer patients with or at risk of developing metastatic disease. As a high neutrophil-to-lymphocyte ratio in patients predicts poor outcome, while mild neutropenia predicts an improved outcome, we urge caution in the use of G-CSF in neutrophil recovery following chemotherapy as there is increasing evidence in preclinical models that G-CSF can promote metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Neutrófilos/metabolismo , Animais , Neoplasias da Mama/terapia , Feminino , Humanos , Linfócitos/metabolismo , Linfócitos/patologia , Neutrófilos/patologia
6.
J Leukoc Biol ; 100(1): 163-75, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26747837

RESUMO

A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1.


Assuntos
Movimento Celular/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Quinases da Família src/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Frações Subcelulares
7.
Cancer Metastasis Rev ; 34(4): 735-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26361774

RESUMO

The presence of neutrophils in tumors has traditionally been considered to be indicative of a failed immune response against cancers. However, there is now evidence showing that neutrophils can promote tumor growth, and increasingly, the data support an active role for neutrophils in tumor progression to distant metastasis. Neutrophils have been implicated in promoting metastasis in cancer patients, where neutrophil numbers and neutrophil-related factors and functions have been associated with progressive disease. Nevertheless, the role of neutrophils in tumors, both at the primary and secondary sites, remains controversial, with some studies reporting their anti-tumor functions. This review will focus on the data demonstrating a role for neutrophils in both tumor growth and metastasis and will attempt to clarify the discrepancies in the literature.


Assuntos
Metástase Neoplásica/imunologia , Neoplasias/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Microambiente Tumoral/imunologia , Biomarcadores Tumorais , Progressão da Doença , Humanos , Macrófagos/imunologia , Metástase Neoplásica/patologia , Neoplasias/patologia , Neovascularização Patológica/imunologia , Prognóstico , Linfócitos T/imunologia
8.
FEBS J ; 280(21): 5228-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23648053

RESUMO

Colony stimulating factor-1 (CSF-1) stimulates mononuclear phagocytic cell survival, growth and differentiation into macrophages through activation and autophosphorylation of the CSF-1 receptor (CSF-1R). We have previously demonstrated that CSF-1-induced phosphorylation of Y721 (pY721) in the receptor kinase insert triggers its association with the p85 regulatory subunit of phosphoinositide 3'-kinase (PI3K). Binding of p85 PI3K to the CSF-1R pY721 motif activates the associated p110 PI3K catalytic subunit and stimulates spreading and motility in macrophages and enhancement of tumor cell invasion. Here we show that pY721-based signaling is necessary for CSF-1-stimulated PtdIns(3,4,5)P production. While primary bone marrow-derived macrophages and the immortalized bone marrow-derived macrophage cell line M-/-.WT express all three class IA PI3K isoforms, p110δ predominates in the cell line. Treatment with p110δ-specific inhibitors demonstrates that the hematopoietically enriched isoform, p110δ, mediates CSF-1-regulated spreading and invasion in macrophages. Thus GS-1101, a potent and selective p110δ inhibitor, may have therapeutic potential by targeting the infiltrative capacity of tumor-associated macrophages that is critical for their enhancement of tumor invasion and metastasis.


Assuntos
Movimento Celular , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/citologia , Inibidores de Fosfoinositídeo-3 Quinase , Purinas/farmacologia , Quinazolinonas/farmacologia , Animais , Western Blotting , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Adesão Celular , Proliferação de Células , Classe I de Fosfatidilinositol 3-Quinases , Ensaio de Imunoadsorção Enzimática , Humanos , Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo
9.
Crit Rev Clin Lab Sci ; 49(2): 49-61, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22468857

RESUMO

Colony stimulating factor-1 (CSF-1, also known as macrophage-colony stimulating factor, M-CSF) has long been known as the primary growth factor regulating survival, proliferation and differentiation of macrophages and other mononuclear phagocytic (MNP) lineage cells. CSF-1 was subsequently identified as a monocyte/macrophage chemokine, a capacity now recognized to be integral to many of the deleterious as well as positive roles of macrophages in development, homeostasis and disease. The pleiotrophic actions of CSF-1 are all transduced by its high affinity receptor, the CSF-1R, a receptor tyrosine kinase (RTK) and the cellular homologue of the v-fms oncoprotein. While the CSF-1R is the sole receptor for CSF-1, an alternative functional ligand for the receptor, interleukin-34 (IL-34), was recently identified. CSF-1-induced CSF-1R activation triggers autophosphorylation of several intracellular tyrosine residues, leading to initiation of an array of phosphotyrosine-based signaling cascades that mediate the wide variety of cellular responses to CSF-1. Dissecting the contributions of the different phosphorylated tyrosine motifs of the receptor to downstream signaling events in macrophages is not only important for our understanding of CSF-1R function, but also for the development of inhibitors to treat diseases where infiltrating macrophages contribute to their progression. This review will outline our current understanding of the CSF-1/CSF-1R signaling axis and describe how a novel macrophage cell line system, which allows examination of CSF-1R signaling in a mature macrophage context, is helping us to tease apart the diverse signaling pathways initiated by CSF-1R activation.


Assuntos
Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Doenças Autoimunes/patologia , Diferenciação Celular , Humanos , Inflamação/patologia , Macrófagos/citologia , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA