Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(12): e0168334, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27977771

RESUMO

Approximately 30% of tumor endothelial cells have over-duplicated (>2) centrosomes, which may contribute to abnormal vessel function and drug resistance. Elevated levels of vascular endothelial growth factor A induce excess centrosomes in endothelial cells, but how other features of the tumor environment affect centrosome over-duplication is not known. To test this, we treated endothelial cells with tumor-derived factors, hypoxia, or reduced p53, and assessed centrosome numbers. We found that hypoxia and elevated levels of bone morphogenetic protein 2, 6 and 7 induced excess centrosomes in endothelial cells through BMPR1A and likely via SMAD signaling. In contrast, inflammatory mediators IL-8 and lipopolysaccharide did not induce excess centrosomes. Finally, down-regulation in endothelial cells of p53, a critical regulator of DNA damage and proliferation, caused centrosome over-duplication. Our findings suggest that some tumor-derived factors and genetic changes in endothelial cells contribute to excess centrosomes in tumor endothelial cells.


Assuntos
Centrossomo/fisiologia , Células Endoteliais/fisiologia , Neoplasias/genética , Neoplasias/patologia , Proteína Supressora de Tumor p53/genética , Animais , Células Cultivadas , Centrossomo/efeitos dos fármacos , Centrossomo/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores
2.
Cardiovasc Res ; 111(1): 84-93, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27142980

RESUMO

AIMS: In developing blood vessel networks, the overall level of vessel branching often correlates with angiogenic sprout initiations, but in some pathological situations, increased sprout initiations paradoxically lead to reduced vessel branching and impaired vascular function. We examine the hypothesis that defects in the discrete stages of angiogenesis can uniquely contribute to vessel branching outcomes. METHODS AND RESULTS: Time-lapse movies of mammalian blood vessel development were used to define and quantify the dynamics of angiogenic sprouting. We characterized the formation of new functional conduits by classifying discrete sequential stages-sprout initiation, extension, connection, and stability-that are differentially affected by manipulation of vascular endothelial growth factor-A (VEGF-A) signalling via genetic loss of the receptor flt-1 (vegfr1). In mouse embryonic stem cell-derived vessels genetically lacking flt-1, overall branching is significantly decreased while sprout initiations are significantly increased. Flt-1(-/-) mutant sprouts are less likely to retract, and they form increased numbers of connections with other vessels. However, loss of flt-1 also leads to vessel collapse, which reduces the number of new stable conduits. Computational simulations predict that loss of flt-1 results in ectopic Flk-1 signalling in connecting sprouts post-fusion, causing protrusion of cell processes into avascular gaps and collapse of branches. Thus, defects in stabilization of new vessel connections offset increased sprout initiations and connectivity in flt-1(-/-) vascular networks, with an overall outcome of reduced numbers of new conduits. CONCLUSIONS: These results show that VEGF-A signalling has stage-specific effects on vascular morphogenesis, and that understanding these effects on dynamic stages of angiogenesis and how they integrate to expand a vessel network may suggest new therapeutic strategies.


Assuntos
Vasos Sanguíneos/metabolismo , Células-Tronco Embrionárias/metabolismo , Células Progenitoras Endoteliais/metabolismo , Neovascularização Fisiológica , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Vasos Sanguíneos/embriologia , Forma Celular , Células Cultivadas , Simulação por Computador , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Microscopia de Vídeo , Modelos Cardiovasculares , Método de Monte Carlo , Morfogênese , Fenótipo , Transdução de Sinais , Fatores de Tempo , Imagem com Lapso de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
3.
Arterioscler Thromb Vasc Biol ; 33(8): 1952-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23744993

RESUMO

OBJECTIVE: Vascular endothelial growth factor (VEGF) signaling induces Notch signaling during angiogenesis. Flt-1/VEGF receptor-1 negatively modulates VEGF signaling. Therefore, we tested the hypothesis that disrupted Flt-1 regulation of VEGF signaling causes Notch pathway defects that contribute to dysmorphogenesis of Flt-1 mutant vessels. APPROACH AND RESULTS: Wild-type and flt-1(-/-) mouse embryonic stem cell-derived vessels were exposed to pharmacological and protein-based Notch inhibitors with and without added VEGF. Vessel morphology, endothelial cell proliferation, and Notch target gene expression levels were assessed. Similar pathway manipulations were performed in developing vessels of zebrafish embryos. Notch inhibition reduced flt-1(-/-) embryonic stem cell-derived vessel branching dysmorphogenesis and endothelial hyperproliferation, and rescue of flt-1(-/-) vessels was accompanied by a reduction in elevated Notch targets. Surprisingly, wild-type vessel morphogenesis and proliferation were unaffected by Notch suppression, Notch targets in wild-type endothelium were unchanged, and Notch suppression perturbed zebrafish intersegmental vessels but not caudal vein plexuses. In contrast, exogenous VEGF caused wild-type embryonic stem cell-derived vessel and zebrafish intersegmental vessel dysmorphogenesis that was rescued by Notch blockade. CONCLUSIONS: Elevated Notch signaling downstream of perturbed VEGF signaling contributes to aberrant flt-1(-/-) blood vessel formation. Notch signaling may be dispensable for blood vessel formation when VEGF signaling is below a critical threshold.


Assuntos
Neovascularização Fisiológica/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Proliferação de Células , Dipeptídeos/farmacologia , Células-Tronco Embrionárias/metabolismo , Endotélio Vascular/anormalidades , Endotélio Vascular/embriologia , Endotélio Vascular/metabolismo , Retroalimentação Fisiológica/efeitos dos fármacos , Retroalimentação Fisiológica/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Camundongos Knockout , Receptores Notch/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Veias/anormalidades , Veias/embriologia , Veias/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
4.
Circ Res ; 98(6): 768-76, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16497987

RESUMO

Oxidized-1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (Ox-PAPC), found in atherosclerotic lesions and other sites of chronic inflammation, activates endothelial cells (EC) to synthesize chemotactic factors, such as interleukin (IL)-8. Previously, we demonstrated that the sustained induction of IL-8 transcription by Ox-PAPC was mediated through the activation of sterol regulatory element-binding protein (SREBP). We now present evidence for the role of endothelial nitric oxide synthase (eNOS) in the activation of SREBP by Ox-PAPC. Ox-PAPC treatment of EC induced a dose- and time-dependent activation of eNOS, as measured by phosphorylation of serine 1177, dephosphorylation of threonine 495, and the conversion of L-arginine to L-citrulline. Activation of eNOS by Ox-PAPC was regulated through a phosphatidylinositol-3-kinase/Akt-mediated mechanism. These studies also demonstrated that pretreatment of EC with NOS inhibitor, Nomega-nitro-L-arginine-methyl ester (L-NAME), significantly inhibited Ox-PAPC-induced IL-8 synthesis. Because SREBP activation had been previously shown to regulate IL-8 transcription by Ox-PAPC, we examined the effects of L-NAME on Ox-PAPC-induced SREBP activation. Our data demonstrated that Ox-PAPC-induced SREBP activation and expression of SREBP target genes were significantly reduced by pretreatment with L-NAME. Interestingly, treatment of EC with NO donor, S-nitroso-N-acetylpenicillamine, did not activate SREBP, suggesting that NO alone was not sufficient for SREBP activation. Rather, our findings indicated that superoxide (O2*-), in combination with NO, regulated SREBP activation by Ox-PAPC. We found that Ox-PAPC treatment generated O2*- through an eNOS-mediated mechanism and that mercaptoethylguanidine, a peroxynitrite scavenger, reduced SREBP activation by Ox-PAPC. Taken together, these findings propose a novel role for eNOS in the activation of SREBP and SREBP-mediated inflammatory processes.


Assuntos
Células Endoteliais/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/fisiologia , Fosfatidilcolinas/farmacologia , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Aterosclerose/etiologia , Proteína Tirosina Quinase CSK , Bovinos , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Ativação Enzimática , Humanos , Interleucina-8/biossíntese , Interleucina-8/genética , NG-Nitroarginina Metil Éster/farmacologia , Oxirredução , Fosfatidilinositol 3-Quinases/fisiologia , Éteres Fosfolipídicos/farmacologia , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Superóxidos/metabolismo , Quinases da Família src
5.
Circ Res ; 98(5): 642-50, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16456101

RESUMO

Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), which has been shown to accumulate in atherosclerotic lesions and other sites of chronic inflammation, activates endothelial cells (EC) to bind monocytes by activation of endothelial beta1 integrin and subsequent deposition of fibronectin on the apical surface. Our previous studies suggest this function of OxPAPC is mediated via a Gs protein-coupled receptor (GPCR). PEIPC (1-palmitoyl-2-epoxyisoprostane E2-sn-glycero-3-phosphorylcholine) is the most active lipid in OxPAPC that activates this pathway. We screened a number of candidate GPCRs for their interaction with OxPAPC and PEIPC, using a reporter gene assay; we identified prostaglandin E2 receptor EP2 and prostaglandin D2 receptor DP as responsive to OxPAPC. We focused on EP2, which is expressed in ECs, monocytes, and macrophages. OxPAPC component PEIPC, but not POVPC, activated EP2 with an EC50 of 108.6 nmol/L. OxPAPC and PEIPC were also able to compete with PGE2 for binding to EP2 in a ligand-binding assay. The EP2 specific agonist butaprost was shown to mimic the effect of OxPAPC on the activation of beta1 integrin and the stimulation of monocyte binding to endothelial cells. Butaprost also mimicked the effect of OxPAPC on the regulation of tumor necrosis factor-alpha and interleukin-10 in monocyte-derived cells. EP2 antagonist AH6809 blocked the activation of EP2 by OxPAPC in HEK293 cells and blocked the interleukin-10 response to PEIPC in monocytic THP-1 cells. These results suggest that EP2 functions as a receptor for OxPAPC and PEIPC, either as the phospholipid ester or the released fatty acid, in both endothelial cells and macrophages.


Assuntos
Aterosclerose/etiologia , Éteres Fosfolipídicos/farmacologia , Receptores de Prostaglandina E/efeitos dos fármacos , Alprostadil/análogos & derivados , Alprostadil/farmacologia , Células Cultivadas , Dinoprostona/metabolismo , Células Espumosas/fisiologia , Humanos , Interleucina-10/biossíntese , Isoprostanos/metabolismo , Isoprostanos/farmacologia , Macrófagos/metabolismo , Monócitos/metabolismo , Oxirredução , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/farmacologia , Éteres Fosfolipídicos/metabolismo , RNA Mensageiro/análise , Receptores de Prostaglandina E/genética , Receptores de Prostaglandina E/fisiologia , Receptores de Prostaglandina E Subtipo EP2 , Fator de Necrose Tumoral alfa/biossíntese , Xantonas/farmacologia
6.
J Biol Chem ; 279(29): 30175-81, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15143062

RESUMO

Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (Ox-PAPC) and its component phospholipids 1-palmitoyl-2-epoxyisoprostane-sn-glycero-3-phosphorylcholine (PEIPC) and 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphorylcholine induce endothelial cells to synthesize chemotactic factors, such as interleukin 8 (IL-8). We have shown recently that Ox-PAPC-mediated induction of IL-8 transcription is independent of NF-kappaB activation, a major transcription factor utilized by cytokines and lipopolysaccharide for the induction of IL-8 transcription. In this study, we provide evidence for the role of c-src in Ox-PAPC and, specifically, PEIPC-mediated IL-8 induction. Ox-PAPC and its component phospholipids induced a rapid and transient phosphorylation of c-src Tyr418, a hallmark of c-src activation, in human aortic endothelial cells (HAEC). Ox-PAPC-mediated IL-8 protein synthesis in HAEC was inhibited by Src family kinase inhibitors, PP1 and PP2, but not by an inactive analog, PP3. Transient expression of plasmids containing C-terminal Src kinase or kinase-deficient dominant-negative c-src resulted in a 72 and 50% reduction in Ox-PAPC-induced IL-8 promoter activation in human microvascular endothelial cells, respectively. In contrast, overexpression of v-src kinase resulted in a 4-fold increase in IL-8 promoter activation, without inducing NF-kappaB promoter activation. Furthermore, treatment of HAEC with Ox-PAPC and its component PEIPC induced the activation of STAT3 by phosphorylating Tyr705, a feature of STAT3 activation. STAT3 is a known downstream effector of c-src. Ox-PAPC-induced activation of STAT3 resulted in the translocation of STAT3 from the cytoplasm of HAEC into their nuclear compartment. Transient expression of a dominant-negative STAT3beta construct in HMEC strongly inhibited IL-8 induction by Ox-PAPC. Taken together, these data demonstrate the role of the c-src kinase/STAT3 pathway in Ox-PAPC-mediated IL-8 expression in endothelial cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Interleucina-8/biossíntese , Fosfolipídeos/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transativadores/metabolismo , Western Blotting , Proteína Tirosina Quinase CSK , Núcleo Celular/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Citoplasma/metabolismo , Endotélio Vascular/metabolismo , Ensaio de Imunoadsorção Enzimática , Genes Dominantes , Humanos , Inflamação , Interleucina-8/metabolismo , Cinética , Modelos Biológicos , NF-kappa B/metabolismo , Oxigênio/metabolismo , Fosfatidilcolinas/farmacologia , Fosfolipídeos/farmacologia , Fosforilação , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Fator de Transcrição STAT3 , Transdução de Sinais , Fatores de Tempo , Transfecção , Tirosina/metabolismo , Quinases da Família src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA