Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1155: 338358, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33766325

RESUMO

Glycerol is a clinical biomarker of lipolysis that is mainly produced by adipose tissues. Blood glycerol content increases in pathological conditions such as metabolic and cardiovascular diseases or cancer cachexia, but also in response to energetic stress such as physical exercise. Accurate glycerol monitoring is therefore important in a range of healthcare contexts. However, current methods available for the quantification of glycerol are expensive, time-consuming, and require the extraction of plasma from blood, from which blood glycerol content is then extrapolated. Here, we report the development of a new point-of-care glycerometer device, DietSee, based on a strip-type biosensor that enables the quantification of glycerol directly from whole blood in 6 s. The performance of the biosensor was first evaluated using buffer solutions and spiked human and mouse plasma samples, and its response was compared with that of the gold-standard colorimetric method. The results obtained using DietSee correlated strongly with those from the reference method and demonstrated a linear response to glycerol levels across a wide range of concentrations (40-750 µM) that were representative of those in the human body. Next, the biosensor was validated using spiked human blood samples over a range of 30-55% hematocrit; it also demonstrated a strong correlation with reference measurements under these conditions (R2 = 0.97). In addition, the biosensor was only minimally affected by a variety of potential interferents (endogenous and exogenous) and was highly stable in storage (more than 2 years when strips were stored dry at 4 °C). Finally, we investigated the application of the biosensor to real-time monitoring of lipolysis and found that the DietSee is well adapted for this purpose in both human and mouse samples. To conclude, the novel DietSee glycerometer is a sensitive, selective, and rapid tool that enables characterization of the metabolic status of an individual by measuring the glycerol concentration from a single fingertip blood drop.


Assuntos
Técnicas Biossensoriais , Glicerol , Animais , Colorimetria , Lipólise , Camundongos
2.
Prog Lipid Res ; 82: 101084, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33387571

RESUMO

Hormone-sensitive lipase (HSL) was initially characterized as the hormonally regulated neutral lipase activity responsible for the breakdown of triacylglycerols into fatty acids in adipose tissue. This review aims at providing up-to-date information on structural properties, regulation of expression, activity and function as well as therapeutic potential. The lipase is expressed as different isoforms produced from tissue-specific alternative promoters. All isoforms are composed of an N-terminal domain and a C-terminal catalytic domain within which a regulatory domain containing the phosphorylation sites is embedded. Some isoforms possess additional N-terminal regions. The catalytic domain shares similarities with bacteria, fungus and vascular plant proteins but not with other mammalian lipases. HSL singularity is provided by regulatory and N-terminal domains sharing no homology with other proteins. HSL has a broad substrate specificity compared to other neutral lipases. It hydrolyzes acylglycerols, cholesteryl and retinyl esters among other substrates. A novel role of HSL, independent of its enzymatic function, has recently been described in adipocytes. Clinical studies revealed dysregulations of HSL expression and activity in disorders, such as lipodystrophy, obesity, type 2 diabetes and cancer-associated cachexia. Development of specific inhibitors positions HSL as a pharmacological target for the treatment of metabolic complications.


Assuntos
Diabetes Mellitus Tipo 2 , Esterol Esterase , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Lipólise , Esterol Esterase/genética , Esterol Esterase/metabolismo
3.
Sci Rep ; 10(1): 6489, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300166

RESUMO

Peroxisome proliferator activated receptor α (PPARα) acts as a fatty acid sensor to orchestrate the transcription of genes coding for rate-limiting enzymes required for lipid oxidation in hepatocytes. Mice only lacking Pparα in hepatocytes spontaneously develop steatosis without obesity in aging. Steatosis can develop into non alcoholic steatohepatitis (NASH), which may progress to irreversible damage, such as fibrosis and hepatocarcinoma. While NASH appears as a major public health concern worldwide, it remains an unmet medical need. In the current study, we investigated the role of hepatocyte PPARα in a preclinical model of steatosis. For this, we used High Fat Diet (HFD) feeding as a model of obesity in C57BL/6 J male Wild-Type mice (WT), in whole-body Pparα- deficient mice (Pparα-/-) and in mice lacking Pparα only in hepatocytes (Pparαhep-/-). We provide evidence that Pparα deletion in hepatocytes promotes NAFLD and liver inflammation in mice fed a HFD. This enhanced NAFLD susceptibility occurs without development of glucose intolerance. Moreover, our data reveal that non-hepatocytic PPARα activity predominantly contributes to the metabolic response to HFD. Taken together, our data support hepatocyte PPARα as being essential to the prevention of NAFLD and that extra-hepatocyte PPARα activity contributes to whole-body lipid homeostasis.


Assuntos
Hepatócitos/patologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Obesidade/metabolismo , PPAR alfa/deficiência , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Hepatócitos/imunologia , Humanos , Metabolismo dos Lipídeos/imunologia , Lipidômica , Fígado/citologia , Fígado/imunologia , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/etiologia , Obesidade/imunologia , Obesidade/patologia , PPAR alfa/genética
4.
Nat Med ; 24(9): 1360-1371, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30061698

RESUMO

Sarcopenia, the degenerative loss of skeletal muscle mass, quality and strength, lacks early diagnostic tools and new therapeutic strategies to prevent the frailty-to-disability transition often responsible for the medical institutionalization of elderly individuals. Herein we report that production of the endogenous peptide apelin, induced by muscle contraction, is reduced in an age-dependent manner in humans and rodents and is positively associated with the beneficial effects of exercise in older persons. Mice deficient in either apelin or its receptor (APLNR) presented dramatic alterations in muscle function with increasing age. Various strategies that restored apelin signaling during aging further demonstrated that this peptide considerably enhanced muscle function by triggering mitochondriogenesis, autophagy and anti-inflammatory pathways in myofibers as well as enhancing the regenerative capacity by targeting muscle stem cells. Taken together, these findings revealed positive regulatory feedback between physical activity, apelin and muscle function and identified apelin both as a tool for diagnosis of early sarcopenia and as the target of an innovative pharmacological strategy to prevent age-associated muscle weakness and restore physical autonomy.


Assuntos
Envelhecimento/patologia , Apelina/sangue , Sarcopenia/sangue , Adenilato Quinase/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apelina/biossíntese , Receptores de Apelina/deficiência , Receptores de Apelina/metabolismo , Peso Corporal , Exercício Físico , Humanos , Cinética , Camundongos Endogâmicos C57BL , Células Musculares/metabolismo , Debilidade Muscular/tratamento farmacológico , Debilidade Muscular/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Biogênese de Organelas , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sarcopenia/patologia , Células Satélites de Músculo Esquelético/metabolismo
5.
Diabetologia ; 58(11): 2627-36, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26245186

RESUMO

AIMS/HYPOTHESIS: Activation of macrophages by fatty acids (FAs) is a potential mechanism linking obesity to adipose tissue (AT) inflammation and insulin resistance. Here, we investigated the effects of FAs released during adipocyte lipolysis on AT macrophages (ATMs). METHODS: Human THP-1 macrophages were treated with media from human multipotent adipose-derived stem (hMADS) adipocytes stimulated with lipolytic drugs. Macrophages were also treated with mixtures of FAs and an inhibitor of Toll-like receptor 4, since this receptor is activated by saturated FAs. Levels of mRNA and the secretion of inflammation-related molecules were measured in macrophages. FA composition was determined in adipocytes, conditioned media and macrophages. The effect of chronic inhibition or acute activation of fat cell lipolysis on ATM response was investigated in vivo in mice. RESULTS: Whereas palmitic acid alone activates THP-1, conditioned media from hMADS adipocyte lipolysis had no effect on IL, chemokine and cytokine gene expression, and secretion by macrophages. Mixtures of FAs representing de novo lipogenesis or habitual dietary conditions also had no effect. FAs derived from adipocyte lipolysis were taken up by macrophages and stored as triacylglycerol droplets. In vivo, chronic treatment with an antilipolytic drug did not modify gene expression and number of ATMs in mice with intact or defective Tlr4. Stimulation of adipocyte lipolysis increased storage of neutral lipids by macrophages without change in number and phenotype. CONCLUSIONS/INTERPRETATION: Our data suggest that adipocyte lipolysis does not activate inflammatory pathways in ATMs, which instead may act as scavengers of FAs.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Ácidos Graxos/metabolismo , Lipólise/fisiologia , Macrófagos/metabolismo , Triglicerídeos/metabolismo , Adipócitos/citologia , Tecido Adiposo/citologia , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Animais , Linhagem Celular , Dioxóis/farmacologia , Ácidos Graxos/farmacologia , Humanos , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Ácido Palmítico/farmacologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
6.
G3 (Bethesda) ; 5(4): 517-29, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25653314

RESUMO

Very few causal genes have been identified by quantitative trait loci (QTL) mapping because of the large size of QTL, and most of them were identified thanks to functional links already known with the targeted phenotype. Here, we propose to combine selection signature detection, coding SNP annotation, and cis-expression QTL analyses to identify potential causal genes underlying QTL identified in divergent line designs. As a model, we chose experimental chicken lines divergently selected for only one trait, the abdominal fat weight, in which several QTL were previously mapped. Using new haplotype-based statistics exploiting the very high SNP density generated through whole-genome resequencing, we found 129 significant selective sweeps. Most of the QTL colocalized with at least one sweep, which markedly narrowed candidate region size. Some of those sweeps contained only one gene, therefore making them strong positional causal candidates with no presupposed function. We then focused on two of these QTL/sweeps. The absence of nonsynonymous SNPs in their coding regions strongly suggests the existence of causal mutations acting in cis on their expression, confirmed by cis-eQTL identification using either allele-specific expression or genetic mapping analyses. Additional expression analyses of those two genes in the chicken and mice contrasted for adiposity reinforces their link with this phenotype. This study shows for the first time the interest of combining selective sweeps mapping, coding SNP annotation and cis-eQTL analyses for identifying causative genes for a complex trait, in the context of divergent lines selected for this specific trait. Moreover, it highlights two genes, JAG2 and PARK2, as new potential negative and positive key regulators of adiposity in chicken and mice.


Assuntos
Adiposidade/genética , Proteínas de Membrana/genética , Locos de Características Quantitativas , Ubiquitina-Proteína Ligases/genética , Tecido Adiposo Branco/metabolismo , Alelos , Animais , Linhagem Celular , Galinhas , Mapeamento Cromossômico , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Proteína Jagged-2 , Proteínas de Membrana/metabolismo , Camundongos , Anotação de Sequência Molecular , Miosinas/genética , Miosinas/metabolismo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
7.
Hum Gene Ther ; 23(12): 1269-79, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22894762

RESUMO

Adeno-associated virus (AAV)-U7-mediated skipping of dystrophin-exon-23 restores dystrophin expression and muscle function in the mdx mouse model of Duchenne muscular dystrophy. Soluble activin receptor IIB (sActRIIB-Fc) inhibits signaling of myostatin and homologous molecules and increases muscle mass and function of wild-type and mdx mice. We hypothesized that combined treatment with AAV-U7 and sActRIIB-Fc may synergistically improve mdx muscle function. Bioactivity of sActRIIB-Fc on skeletal muscle was first demonstrated in wild-type mice. In mdx mice we show that AAV-U7-mediated dystrophin restoration improved specific muscle force and resistance to eccentric contractions when applied alone. Treatment of mdx mice with sActRIIB-Fc increased body weight, muscle mass and myofiber size, but had little effect on muscle function. Combined treatment stimulated muscle growth comparable to the effect of sActRIIB-Fc alone and dystrophin rescue was similar to AAV-U7 alone. Moreover, combined treatment improved maximal tetanic force and the resistance to eccentric contraction to similar extent as AAV-U7 alone. In conclusion, combination of dystrophin exon skipping with sActRIIB-Fc brings together benefits of each treatment; however, we failed to evidence a clear synergistic effect on mdx muscle function.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Dependovirus/genética , Distrofina/genética , Terapia Genética/métodos , Distrofia Muscular Animal/terapia , Receptores de Activinas Tipo II/genética , Animais , Peso Corporal , Distrofina/metabolismo , Éxons , Vetores Genéticos/genética , Vetores Genéticos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/fisiopatologia
8.
Exp Physiol ; 97(1): 125-40, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22058168

RESUMO

Myostatin regulates both muscle mass and muscle metabolism. The myostatin null (MSTN(-/-)) mouse has a hypermuscular phenotype owing to both hypertrophy and hyperplasia of the myofibres. The enlarged muscles display a reliance on glycolysis for energy production; however, enlarged muscles that develop in the absence of myostatin have compromised force-generating capacity. Recent evidence has suggested that endurance exercise training increases the oxidative properties of muscle. Here, we aimed to identify key changes in the muscle phenotype of MSTN(-/-) mice that can be induced by training. To this end, we subjected MSTN(-/-) mice to two different forms of training, namely voluntary wheel running and swimming, and compared the response at the morphological, myocellular and molecular levels. We found that both regimes normalized changes of myostatin deficiency and restored muscle function. We showed that both exercise training regimes increased muscle capillary density and the expression of Ucp3, Cpt1α, Pdk4 and Errγ, key markers for oxidative metabolism. Cross-sectional area of hypertrophic myofibres from MSTN(-/-) mice decreased towards wild-type values in response to exercise and, in this context, Bnip3, a key autophagy-related gene, was upregulated. This reduction in myofibre size caused an increase of the nuclear-to-cytoplasmic ratio towards wild-type values. Importantly, both training regimes increased muscle force in MSTN(-/-) mice. We conclude that impaired skeletal muscle function in myostatin-deficient mice can be improved through endurance exercise-mediated remodelling of muscle fibre size and metabolic profile.


Assuntos
Hipertrofia/fisiopatologia , Fibras Musculares Esqueléticas/fisiologia , Miostatina/deficiência , Condicionamento Físico Animal , Indutores da Angiogênese/metabolismo , Animais , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Citoplasma/metabolismo , Citoplasma/fisiologia , Tolerância ao Exercício , Glicólise , Hipertrofia/genética , Hipertrofia/metabolismo , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Miostatina/genética , Miostatina/metabolismo , Tamanho do Órgão , Oxirredução , Fenótipo , Ensino
9.
J Muscle Res Cell Motil ; 31(2): 111-25, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20567887

RESUMO

Myostatin-deficient mice (MSTN (-/-)) display excessive muscle mass and this is associated with a profound loss of oxidative metabolic properties. In this study we analysed the effect of two endurance-based exercise regimes, either a forced high-impact swim training or moderate intensity voluntary wheel running on the adaptive properties of the tibialis anterior and plantaris muscle from MSTN (-/-) mice. MSTN (-/-) and wild type (MSTN (+/+)) animals had comparable performances in the wheel running regime in terms of distance, average speed and time, but MSTN (-/-) mice showed a reduced ability to sustain a high-impact activity via swimming. Swim training elicited muscle specific adaptations on fibre type distribution in MSTN (-/-); the tibialis anterior displaying a partial transformation in contrast to the plantaris which showed no change. Conversely, wheel running induced similar changes in fibre type composition of both muscles, favouring transitions from IIB-to-IIA. Succinate dehydrogenase activity, an indicator of mitochondrial oxidative potential was increased in response to either exercise regime, with wheel running eliciting more robust changes in the MSTN (-/-) muscles. Examination of the cross sectional area of individual fibre types showed genotype-specific responses with MSTN (-/-) mice exhibiting an incapability of fibre enlargement following the wheel running regime, as opposed to MSTN (+/+) mice and a greater susceptibility to muscle fibre area loss following swimming. In conclusion, the muscle fibre hypertrophy, oxidative capacity and glycolytic phenotype of myostatin deficient muscle can be altered with endurance exercise regimes.


Assuntos
Músculo Esquelético/patologia , Miostatina/genética , Condicionamento Físico Animal/fisiologia , Adaptação Fisiológica , Animais , Hipertrofia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Miosinas/metabolismo , Miostatina/deficiência , Fenótipo , Esforço Físico/fisiologia
10.
Hum Mol Genet ; 15(24): 3544-58, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17101632

RESUMO

Mutations of the spastin gene (Sp) are responsible for the most frequent autosomal dominant form of spastic paraplegia, a disease characterized by the degeneration of corticospinal tracts. We show that a deletion in the mouse Sp gene, generating a premature stop codon, is responsible for progressive axonal degeneration, restricted to the central nervous system, leading to a late and mild motor defect. The degenerative process is characterized by focal axonal swellings, associated with abnormal accumulation of organelles and cytoskeletal components. In culture, mutant cortical neurons showed normal viability and neurite density. However, they develop neurite swellings associated with focal impairment of retrograde transport. These defects occur near the growth cone, in a region characterized by the transition between stable microtubules rich in detyrosinated alpha-tubulin and dynamic microtubules composed almost exclusively of tyrosinated alpha-tubulin. Here, we show that the Sp mutation has a major impact on neurite maintenance and transport both in vivo and in vitro. These results highlight the link between spastin and microtubule dynamics in axons, but not in other neuronal compartments. In addition, it is the first description of a human neurodegenerative disease which involves this specialized region of the axon.


Assuntos
Adenosina Trifosfatases/genética , Axônios/metabolismo , Microtúbulos/metabolismo , Mutação , Adenosina Trifosfatases/fisiologia , Animais , Axônios/patologia , Axônios/ultraestrutura , Sequência de Bases , Comportamento Animal , Transporte Biológico , Western Blotting , Células Cultivadas , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Sistema Nervoso Central/ultraestrutura , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Éxons/genética , Deleção de Genes , Heterozigoto , Homozigoto , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Neurônios Motores/ultraestrutura , Neuritos/metabolismo , Neuritos/fisiologia , Estrutura Terciária de Proteína , Espastina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA